
www.manaraa.com

Competitive Algorithms for Distributed DataManagementYair Bartal Amos FiatDepartment of Computer ScienceSchool of MathematicsTel-Aviv UniversityTel-Aviv 69978, Israel. Yuval Rabani
AbstractWe deal with the competitive analysis of algorithms for managing data in a distributedenvironment. We deal with the �le allocation problem ([DF], [ML]), where copies of a �le maybe be stored in the local storage of some subset of processors. Copies may be replicated anddiscarded over time so as to optimize communication costs, but multiple copies must be keptconsistent and at least one copy must be stored somewhere in the network at all times. We dealwith competitive algorithms for minimizing communication costs, over arbitrary sequences ofreads and writes, and arbitrary network topologies. We de�ne the constrained �le allocationproblem to be the solution of many individual �le allocation problems simultaneously, subjectto the constraints of local memory size. We give competitive algorithms for this problemon the uniform network topology. We then introduce distributed competitive algorithms foron-line data tracking (a generalization of mobile user tracking [AP1, AP3]) to transform ourcompetitive data management algorithms into distributed algorithms themselves.1 IntroductionThe management of data in a multiprocessing environment has been extensively studied. The1981 survey paper by Dowdy and Foster [DF], dealing with the �le allocation (or assignment)problem, cites close to a hundred references. 1

www.manaraa.com

The �le allocation problem has a plethora of models, with di�ering design goals and assump-tions. [DF] compares studies on fourteen di�erent models, and mentions several others. We dealwith dynamic self-adjusting algorithms, in the context of two basic �le allocation problems, andprimarily address issues of communications e�ciency. We de�ne the �le allocation problem andthe more complex constrained �le allocation problem, but these names may conict with otherusage.We consider the competitive performance [ST, KMRS, MMS, BLS, BBKTW] of algorithms forthese problems, and present algorithms with an optimal or nearly optimal competitive ratio. Blackand Sleator [BS] consider competitive algorithms for two partial components of the �le allocationfamily of problems. Our �le allocation problem may be viewed as the combined solution to thetwo subproblems de�ned in [BS].Another issue is that of global versus distributed management. The question of �le allocationis quite di�erent in the context of disk management in a small network of large mainframes versuslocal cache management in a large scale multiprocessing computer. We show that our competitivedata management algorithms can be run in a distributed environment, at the cost of a smallincrease of the competitive ratio.1.1 Competitive BasicsInformally, an on-line game consists of a sequence of interleaved events and responses. Eventsare produced by one player, the adversary, whereas responses are produced by the other player,the on-line algorithm. Each response is produced without knowing what future events will be. Asequence of events and responses has a �xed cost.The competitive ratio [ST, KMRS] is de�ned as the ratio between the cost associated with anon-line algorithm to deal with a sequence of events versus the cost expended by an optimal (o�-line) algorithm. The competitive ratio is c if for all event sequences, (online cost) � c � (o�-linecost) + some additive constant. A competitive algorithm with a competitive ratio of c is calledstrictly competitive if the additive constant is zero. Models for on-line problems are presentedin [BLS], [MMS], [BBKTW]. Competitive analysis of distributed data management algorithmsbegins with Karlin et. al. in [KMRS] who analyze competitive algorithms for snoopy caching ona bus connected PRAM.If the on-line algorithm may use randomization to process events then the competitive ratiois de�ned as an expectation and one must make precise the power given to the adversary. Ben-David et. al. [BBKTW] de�ne oblivious and adaptive adversaries and show various relationships2

www.manaraa.com

between the competitive ratios achievable against di�erent adversaries. An oblivious adversarymust commit to the sequence of events while knowing neither the coin tosses nor the actions takenby the on-line algorithm. An adaptive adversary may decide upon the next event after seeing allprevious on-line responses. An adaptive on-line adversary must respond to events when it decidesupon them and may not later change previous actions. An adaptive o�-line adversary may decideupon all its responses after seeing the entire sequence, [BBKTW] show that randomization doesnot help against such an adversary.The distinction between adaptive and oblivious adversaries is not relevant for deterministicalgorithms. We distinguish between the adversary types by adding the quali�cation \(oblivious)"or \(adaptive)" when referring to a competitive ratio.[BBKTW] also show how to transform a randomized c-competitive algorithm against an adap-tive on-line adversary into a c2-competitive deterministic algorithm if a certain augmented poten-tial function they de�ne is computable.1.2 The File Allocation ProblemA network is a weighted graph where processors are represented by vertices P , and edges weightsrepresent the length or cost of the link between the two adjacent processors. The weighted graphneed not obey the triangle inequality, but a natural metric space can be de�ned where the pointsare processors and the distance between two points is equal to the length of the shortest pathbetween the processors in the weighted graph. We use the terms network, weighted graph, andmetric space as called for by the discussion, but they refer to the same underlying interconnectionnetwork.The �le allocation problem assumes that data is organized in indivisible blocks such as �les(or pages). Data can be accessed via communication links by paying a charge equal to the datatransfer size times the distance traversed. Words or records can be accessed or updated overcommunication links, but a �le cannot be split among processors. Files may be replicated invarious processors throughout the network, but consistency must be maintained. Copies may alsobe discarded but at least one copy of every �le must be stored somewhere in the network. Thisproblem can be formalized as follows:Initially, a subset Q � P of processors is each assigned a copy of the �le. The algorithm receivesa sequence of requests initiated by processors in P . Each request is either a read request or a writerequest. A read request at processor r is served by the closest processor p holding a copy of the�le. The cost associated with this transmission is the distance between p and r. In response to3

www.manaraa.com

a write request initiated at processor w, the algorithm must transmit an update to all currentlyheld copies of the �le { the subset Q � P . It pays a cost equal to the minimum Steiner treespanning Q[fwg. In between requests, the algorithm may re-arrange the copies of the database.A processor may delete the copy it is holding, unless it is the last copy in the network, at no cost.The �le may also be replicated from a processor p, which holds a copy, to a subset Q0 � P . Thecost of replicating is equal to D times the minimum Steiner tree spanning Q0 [fpg. D representsthe ratio between the size of the entire �le and the size of the minimal data unit being read orupdated. A new current subset Q of processors holding copies of the �le is determined as a resultof delete and replicate steps. A combination of a replicate step from a processor p to a processorq, followed by a delete at p, is sometimes called a migration step. The subset Q is called thecon�guration of the algorithm.While the costs above are certainly a lower bound on the communication costs for any algorithmin a given con�guration, it is an upper bound for on-line algorithms only if they have globalknowledge of the current con�guration and can solve hard minimum Steiner tree problems. Infact, we can charge the on-line algorithm the real communication costs and obtain competitivealgorithms without either assumption.If many read requests to a speci�c �le are issued by some processor, it may be advisable to copythe relevant �le to, or near, that processor. However, this should be balanced by the relativelygreater cost of moving an entire �le versus the smaller cost of transferring only the data beingread. If a processor issues a write request, it now seems advisable to move all copies of the �le to,or near, the issuing processor. I.e., move some copy near the processor and discard others. Theseconicting heuristics must somehow be balanced.One way to limit the concerns of data consistency is to assume that only one processor maystore a copy of a �le at any given time. Thus, read and write requests issued by other processorsin the network must all access the processor that holds the copy. [BS] call this problem the �le mi-gration problem. [BS] give an optimal 3-competitive ratio for this problem on the uniform networktopology and for trees. Westbrook ([W]) gives a randomized 3-competitive algorithm against anadaptive on-line adversary for any network, and a 1+�-competitive randomized algorithm againstan oblivious adversary. The data migration problem can also be considered as a special case ofthe 1-server with excursion problem de�ned in [MMS].Black and Sleator also consider the �le replication problem, which is the �le allocation problemwith writes disallowed. Here, copies need never be discarded. They give an optimal 2-competitivealgorithm for the replication problem when the network is a tree, or a uniform graph.We give a randomized O(log n)-competitive algorithm against an adaptive on-line adversary4

www.manaraa.com

for the �le allocation problem on any network with n processors. We also prove that
(log n) isthe best competitive ratio one can obtain for general networks, even for randomized algorithmsagainst an oblivious adversary. Our algorithm is also memoryless [RS] (I.e., its decisions dependonly on its current con�guration and the current request). We give an optimal deterministic 3-competitive algorithm for the uniform architecture (e.g., bus based). Westbrook and Yan [WY1]have obtained an optimal deterministic 3-competitive algorithm for tree networks. In this paperwe present time and memory e�cient competitive algorithms for tree networks.The proof of our O(log n)-competitive algorithm uses a construct we call the \natural poten-tial function." This is a modi�cation of the [BBKTW] \augmented potential function." We provegeneral theorems relating a large class of con�guration problems and the natural potential func-tion. This is useful in proving the correctness of competitive algorithms for complex problemsby concatenating competitive algorithms for simpler subproblems. Our analysis of the competi-tive �le allocation algorithm is based upon the natural potential function for on-line Steiner treealgorithms. Similar ideas appear in [CL] in the context of deterministic algorithms, our naturalpotential function is de�ned for both deterministic and randomized algorithms.1.3 The Constrained File Allocation ProblemIf it is not true that every processor can accommodate all �les, then copying a �le into a processor'slocal memory may be impossible as that memory is full. Possibly, some other �le in local memoryshould be dropped. However, if this candidate is the last copy in the network, it must be storedsomewhere else. Thus, it may be dumped to some other processor that has space for it, or thatwill have space for it after it too drops a �le currently in its memory. Clearly, this game of hotpotato may continue.The constrained �le allocation problem attempts to solve many individual �le allocation prob-lems simultaneously, while considering the actual memory capacity of the processors. The pointis that the di�erent �le allocation problems may interfere with each other if there is insu�cientmemory. Similarly, we could de�ne the constrained �le migration problem if holding multiplecopies of the same �le is disallowed.For the �le allocation problem, di�erent �les may have di�erent sizes as every �le allocationproblem is solved independently. For the constrained �le allocation problem, we only deal with�les equal in size (D). One case where this makes perfect sense is in the context of distributedvirtual memory, where the entire network is viewed as one large address space, and pages (ofvarious multiplicities) are stored throughout the network so as to minimize communication costs.5

www.manaraa.com

Given that processor i can accommodate ki �les, all �les equal in size, let m = Pni=1 ki. Wegive an O(m) competitive deterministic algorithm for the constrained �le allocation problem onuniform networks. We also give a lower bound of
(m) on the competitive ratio for any network.1.4 Distributed ExecutionOur algorithms above assume that some centralized power keeps track of the migrating, replicating,and dying populations of �les in the network, and tells processors how to go about �nding theclosest current copy of every �le. To justify this assumption in the distributed setting for arbitraryarchitectures, we present a generalization of the Awerbuch and Peleg [AP1, AP3] mobile useralgorithm called distributed data tracking.Disallowing ESP, if two processors have a copy of the same �le then it must have a commonsource and must have reached these processors through communications links. We seek to accessa copy of a �le, while passing through a path of length not much larger than the shortest path toa copy of the �le. We manage a distributed data structure that allows fast access to the closestcopy of a �le, while the cost of managing the data structure is amortized against the cost of thedata movement itself.[AP1] solve a similar problem, they allow a move operator to be applied to a mobile user,but do not e�ciently support birth and death. We allow insert and delete operations. Thecompetitive ratio is polylogarithmic in n. The total cost for a sequence of inserts and deletes isO(log2 n= log2D) times the inherent cost for these operations, where D represents the �le size.The path length traversed per �nd is O(log2 n= log2D) times the length of the shortest path to acopy of the �le, and the copy of the data found is at distance at most O(log n= logD) times thelength of the shortest path to a copy.We use distributed data tracking to we present a randomized distributed algorithm for the �leallocation problem, with a competitive ratio of O(log4 n=log3D) against adaptive on-line adver-saries.Our major omission in this paper is that we do not consider problems of concurrency ande�ectively assume that all read and write commands are serialized. We note that some aspects ofour algorithms do not require this assumption, but do not claim a complete solution at present.6

www.manaraa.com

2 Preliminaries3 Con�guration Problems and Potential FunctionsWe de�ne on-line con�guration problems. As a class of problems it is equivalent to the request-answer games of [BBKTW]. Most of the previously studied on-line problems (including serverproblems and metrical task systems, and including the problems dealt with in this paper) arenaturally described in the context of this model.De�nition. An on-line con�guration problem consists of a set of con�gurations Con, a set ofrequests Req, and cost function cost : Con� Con�Req 7! IR [f1g.An algorithm for an on-line con�guration problem gets a sequence of requests drawn from Reqand an initial con�guration drawn from Con. For each request r in the input sequence, the algo-rithm selects a con�guration from Con. If C1 is the con�guration selected for the previous request(or the initial con�guration, if r is the �rst request in the sequence) and C2 is the con�gurationselected for r, then the algorithm's cost for serving r is cost(C1; C2; r). The cost of the algorithmover the entire sequence is the sum of costs for serving the individual requests.A randomized algorithm tosses coins to select con�gurations. Its cost is the expectation takenover its own coin tosses. An on-line algorithm selects the con�guration for a request r independentof the su�x of the sequence after r.The index of a request in an input sequence is called the stage or the time.A task system (see [BLS]) is an on-line con�guration problem where the cost function has thefollowing structure. De�ne the cost of a move between con�gurations in Con, denoted dist(C1; C2)(where C1; C2 2 Con) (this is the move cost). Associate with every request r and every con�gu-ration C the cost of serving r in con�guration C, denoted task(C; r) (this is the task cost). Thecost function of a task system is de�ned by: cost(C1; C2; r) = dist(C1; C2) + task(C2; r). For atask system, input requests are usually called tasks. If the move cost function dist forms a metricspace over Con, then the task system is called metrical.The history of an algorithm at a given stage is de�ned by the corresponding pre�x of thesequence of requests and the algorithm's coin tosses so far.The memory of an algorithm is a subset of its history such that the way the algorithm servesfuture requests is a function of its memory.For the competitive analysis of on-line algorithms, request sequences are assumed to be gener-7

www.manaraa.com

ated by an adversary that has to serve them as well. The competitive ratio of an on-line algorithmis the ratio of costs maximized over all adversaries of a certain type. In this paper, we are specif-ically interested in analysis against the adaptive on-line adversary. This type of adversary cangenerate the sequence of requests on-line as the algorithm serves them, and can adapt to theon-line algorithm's coin tosses after each request is served, as long as the adversary serves eachrequest before the on-line algorithm does so. So, if the on-line algorithm is randomized, the se-quence generated by this type of adversary is randomized as well. Ben-David et al. [BBKTW]elaborate on this and other types of adversaries.Notation.Fix a time n. The request sequence at time n, is denoted �n = r1r2 � � � rn.Let Alg be an on-line algorithm, and let Adv be an adversary. Alg's history at stage n isdenoted hn, its memory is denoted mn, and the adversary's con�guration is denoted An. A0 andh0 are Adv's initial con�guration, and Alg's initial history respectively.CostAlg(�n), and CostAdv(�n) denote Alg's cost and the adversary's cost for serving �n respec-tively. For a randomized algorithm E(CostAlg(�n)) denotes its expected cost over the requestsequence.Let � be a sequence of requests, then E� (CostAlg(hn; �)) denotes Alg's expected cost for serving� after serving �n, conditioned upon the fact that Alg's history after serving �n is hn (i.e., tosscoins as to reach this history).The notation E� (�), where � is a sequence of requests, means that expectation is taken over thealgorithm's coin tosses while serving � . (The subscript � in the notation is often omitted whenthe meaning is clear.)Since an on-line algorithm's future behavior depends on its memory alone, the algorithm'smemory is often used instead of its history. Similarly CostAdv(An; �) denotes the adversary's costfor serving � starting with con�guration An.Finally let the history spaceH of the problem be the set of all possible pairs of request sequencesand coin tosses.We de�ne potential functions for on-line algorithms:De�nition. A potential function � for a (possibly randomized) algorithm Alg and some constantc is a function � : H�Con 7! IR, having the following properties:1. For every history hn and con�guration An, �(hn; An) � 0.2. For every n � 1, let Alg's history at time n be hn, and let Adv's �nal con�guration be An.8

www.manaraa.com

Then, E(�(hn; An))� �(h0; A0) � E(c � CostAdv(�n)� CostAlg(�n));A potential function � is called strict i� �0 = �(h0; A0) = 0.Potential functions are useful in the competitive analysis of on-line algorithms, as shown in thefollowing theorem (see [ST]):Theorem 1 If there exists a potential function for Alg (and c), then Alg is c-competitive (againstadversaries for which property 2 above holds).The following types of potential functions are commonly used for competitive analysis againstan adaptive on-line adversary. We name these types of potential functions according to the numberof steps in the game on which the analysis proceeds.De�nition. A two-step potential function has property 1 of a potential function, and, instead ofproperty 2, the following stronger property: Let �n+1 = �nr, hn+1 and An+1 be Alg's history andAdv's con�guration after �n+1, respectively. Then,E(�(hn+1; An+1))� �(hn; An) � c � CostAdv(An; r) � E(CostAlg(hn; r)):A one-step potential function for a task system algorithm has property 1 of a potential functionand the following properties:�(hn; An+1)� �(hn; An) � c � dist(An; An+1) (1)E(�(hn+1; An+1))� �(hn; An+1) � c � task(An+1; r)� E(CostAlg(hn; r)): (2)We will use the term global potential function to refer to any potential function that satis�esthe �rst de�nition in order to distinguish between the �rst de�nition of a potential function andthe last two de�nitions. Obviously, one or two-step potential functions are also global potentialfunctions.Remark.We use here the usual de�nition of a task system in which the task cost depends onthe new con�guration. All results stated in the next section regarding task systems also hold ifthe task cost depends on the con�guration before receiving the request. The data managementproblems are formalized in the latter manner. 9

www.manaraa.com

4 The Natural Potential FunctionFix some on-line con�guration problem P, let Alg be an on-line algorithm for P, and let c > 0.Let the adversary be Adv0. Let �n be the previous request sequence it has produced, and let mnbe the current on-line memory con�guration. We de�ne the natural potential function for Alg asfollows: �(mn; A) = supAdvfE(CostAlg(mn; �)� c � CostAdv(A; �))g;where Adv ranges over all possible adaptive on-line adversaries that reach con�guration A, and� is a random variable that represents the request sequence generated by Adv.Theorem 2 An algorithm Alg is c-competitive for P against adaptive on-line adversaries i� Alghas a two-step potential function (for c). Alg is strictly competitive i� the potential function isstrict.Proof. The if direction follows immediately from the fact that any two-step potential functionis also global.We will prove that � is indeed a two-step potential function for Alg and c.We �rst show that � is well-de�ned, that is �nite, for all memory values mn and all con�gura-tions A. Assume that Alg is c-competitive against adaptive on-line adversaries, then there exist aconstant a0 s.t. for every on-line adversary AdvE(CostAlg(�)) � c � E(CostAdv(�)) + a0(where � is a random variable representing the request sequence generated by Adv). Now, letAdv be the adaptive on-line adversary that produces the random sequence � . De�ne adversaryAdv1 as follows: Adv1 produces the request sequence �n, and serves it the same as Adv0. He thencontinues to generate a random sequence � only if the Alg's memory is mn, and serves it the sameas Adv would (otherwise, Adv1 terminates the sequence). Let p be the probability that Alg'smemory after serving �n is mn. Since mn is a valid memory con�guration for Alg after serving �n,p > 0. The expected cost for Alg against Adv1 satis�esE(CostAlg(�n�)) � pE(CostAlg(mn; �)):The cost of the adversary isE(CostAdv1(�n�)) = CostAdv0(�n) + pE(CostAdv(A; �)):10

www.manaraa.com

From the competitiveness of Alg we havepE(CostAlg(mn; �)) � E(CostAlg(�n�))� c � E(CostAdv1(�n�)) + a0= c � fpE(CostAdv(A; �)) + CostAdv0(�n)g+ a0:Set a1 = 1p(CostAdv0(�n) + a0). Then for any adaptive on-line adversary Adv,E(CostAlg(mn; �)) � c � E(CostAdv(A; �)) + a1:We therefore conclude that the natural potential function it is �nite.We now show it is a two-step potential function for Alg.Clearly for all n and A, � is nonnegative since for � = � the empty sequence, CostAlg =CostOPT = 0. Consider a new request r generated by Adv0. Adversary Adv0 serves the requestby moving from con�guration An to con�guration An+1. Then mn+1 is chosen by the on-linealgorithm according to its coin tosses on r.Consider the expected change in the potential function after serving a new request r. Thepotential function value before the request may only decrease if we limit the adversary to requestsequences that start with a request at r. Thus we obtainE(��) = Er(�(mn+1; An+1))��(mn; An)� Er[supAdvfE(CostAlg(mn+1; �)� c � CostAdv(An+1; �))g]� supAdvfE(CostAlg(mn; r�)� c � CostAdv(An; r�))g:If an adversary Adv starts on con�guration An+1 then we can bound the previous potential functionfrom below, by using an adversary which �rst serves the request the same as Adv0, moving fromcon�guration An to An+1, and then continues the same as Adv. Hence,E(��) � supAdvfEr[E(CostAlg(mn+1; �)� c � CostAdv(An+1; �))]� fE(CostAlg(mn; r�))� c � CostAdv0(An; r) � c � Er[E(CostAdv(An+1; �))]gg= supAdvfEr[E� (CostAlg(mn+1; �))]� Er� (CostAlg(mn; r�))g+ c � CostAdv0(An; r)= c � CostAdv0(An; r) � E(CostAlg(mn; r)):If Alg is strictly competitive then for every on-line adversary Adv, there holds E(CostAlg(�)) �c � E(CostAdv(�)), by the de�nition of �, it follows that �0 = 0 , and hence � is a strict potentialfunction. 11

www.manaraa.com

Theorem 3 An algorithm Alg for a task system is c-competitive against adaptive on-line adver-saries i� it has a one-step potential function (for c).Proof. The if direction follows from the fact that any one-step potential function is also global.We shall show � is a one-step potential function for task systems.Consider an adversary move from con�guration An to con�guration An+1 to serve the requestr. By the triangle inequality the cost of an adversary to serve a request sequence starting atcon�guration An, is at most the cost of �rst moving to An+1 and then serving the request sequencethere. Therefore, �� = �(mn; An+1)��(mn; An)� supAdvfE(CostAlg(mn; �)� c � CostAdv(An+1; �))� E(CostAlg(mn; �)� c �CostAdv(An; �))g= supAdvfc � CostAdv(An; �)� c � CostAdv(An+1; �)g� c � dist(An; An+1):We now consider the change in the potential due to Alg's move. The cost for an adversary toserve the request sequence r� in some con�guration, di�ers by at most the cost of the task r inthat con�guration from the cost of serving just � . Therefore,E(��) = Er(�(mn+1; An+1))��(mn; An+1)� supAdvfEr[E(CostAlg(mn+1; �)� c � CostAdv(An+1; �))]� E(CostAlg(mn; r�)� c � CostAdv(An+1; r�))g= supAdvfEr[E�(CostAlg(mn+1; �))]� Er�(CostAlg(mn; r�))g+ c � task(An+1; r)= c � task(An+1; r)� E(CostAlg(mn; r)):4.1 The On-line Steiner Tree ProblemLet G be a weighted graph. An on-line Steiner tree algorithm obtains a sequence of vertices� = v1; v2; : : : ; v` of the graph G.In response the Steiner tree algorithm computes subtrees T1; T2; : : : ; T` of G, such that for everyi, i = 1; 2; : : : ; `, Ti spans all vertices vj, j = 1; 2; : : : ; i (and possibly other vertices as well). The12

www.manaraa.com

subtree Ti must include Ti�1 as a subgraph. The algorithm must compute Ti independently ofvertices vj, j > i.The con�guration of a Steiner tree algorithm is the tree it currently holds. The cost forchanging from con�guration Ti to con�guration Ti+1 is is de�ned to be equal to the sum of weightsof the edges added to Ti as to obtain Ti+1. This is also referred to as the distance between thecon�gurations dist(Ti; Ti+1).For a Steiner tree algorithm Alg, the over an input request sequence �, denoted costAlg(�),is de�ned to be the sum of the individual request costs: Pi dist(Ti; Ti+1). It follows from thede�nition that this cost is equal to the weight of T`.The cost of an optimal adversary is the weight of a minimum Steiner tree spanning all verticesin �.Since we are interested in strictly competitive on-line Steiner tree algorithms the word \strictly"is often omitted when discussing the on-line Steiner tree problem.When required, the superscript St is used to distinguish between Steiner tree dist and costfunctions and other dist and cost functions.Notation.For a weighted graph G, d(p; q) denotes the weight of the minimum weighted pathbetween vertices p and q of G . Where Q is a subset of vertices and p is a vertex of G, d(Q; p) =minq2Qfd(p; q)g.The k-neighborhood of a vertex v is the set of all vertices u, s.t., d(u; v) � k. This set is denotedNv(k).T (Q) denotes the weight of a minimum Steiner tree spanning the vertices in Q. T (Q) is alsoused to denote the Steiner tree itself, and the meaning should be clear from the context.Where S is a tree, T (S) simply denotes the weight of the tree.Where S is a tree and Q is a subset of vertices in G, T (S;Q) denotes the minimum Steinerexpansion of S spanning Q; i.e., the minimum-weighted tree T , such that S is a subtree of T andT spans Q.The on-line Steiner tree problem is equivalent to a special case of the �le allocation problem,where D = 1, only read requests are issued, and the algorithm is forced to replicate upon a readrequest.Imaze and Waxman [IW] have de�ned this problem and gave upper and lower bounds for it.They have shown that the greedy on-line Steiner tree algorithm is dlog ne competitive.13

www.manaraa.com

For completeness of the discussion we give here an alternative very simple proof of this claim.Analysis of the greedy Steiner tree algorithm was also independently made by [AA], [ABF1], [CV]and [WY2] giving similar bounds.The Greedy Steiner Tree Algorithm. The greedy Steiner tree algorithm connects a newpoint to the closest point already in the tree.Theorem 4 The greedy Steiner tree algorithm is strictly dlog ne-competitive for any weightedgraph over n vertices.Proof. Let � = v1; v2; : : : ; v` be the request sequence of vertices. Let A be the minimum Steinertree spanning all vertices in �.Let H be a minimal cycle for the vertices in �. The weight of H is bounded above by twice theweight of A.Consider any two adjacent vertices v and u along the cycleH. W.l.o.g let u be the one requestedafter v, then the cost for serving the request for u is at most d(u; v) which is at most the weightof the path between them in H.Now divide the vertices into bn=2c pairs of adjacent vertices along the cycle H. This can bedone so that the sum of weights of paths between these adjacent vertices will be at most half thetotal weight of H, and therefore at most the weight of A.It follows that the cost greedy incurs on the bn=2c requests for a vertex in each of these pairsis at most the weight of A.The result follows by removing these bn=2c vertices and repeating the process described untilone vertex is left. Thus we get that greedy's cost is at most dlog ne times the weight of theminimum Steiner tree A.5 A File Allocation AlgorithmWe present a randomized algorithm for the �le allocation problem on all networks, which iscompetitive against an adaptive on-line adversary.Let N be an arbitrary network. Let Alg be a strictly c-competitive Steiner tree algorithm onN . We show that Alg can be used to give a competitive randomized �le allocation algorithm onN . We assume that the initial con�guration consists of one copy of the �le at a processor p of N .If that is not the case we start by deleting all copies of the �le except one, incurring no cost.14

www.manaraa.com

Algorithm Steiner Based (SB).Algorithm SB simulates a version of the Steiner tree algorithm Alg starting with p as the initialcon�guration. At all times, the set of processors in which SB keeps copies of the �le is equal tothe set of processors covered by Alg's Steiner tree.Upon receiving a read request initiated at node r, the algorithm serves it, and then withprobability 1=D feeds Alg with a new request at vertex r . In response Alg computes a newSteiner tree T 0 in place of its previous tree T . SB replicates new copies of the �le at the processorscorresponding to the vertices that Alg added to its tree.Upon receiving a write request initiated at node w, the algorithm serves it, and with probability1=�D deletes all copies of the �le, leaving only one copy at the processor closest to w, andthen migrates the �le to w, initializing a new version of Alg starting at vertex w as its initialcon�guration.SB achieves best performance for � = p3.Theorem 5 If Alg is a strictly c-competitive Steiner tree algorithm against adaptive on-line ad-versaries on a network N , then SB is a (2 + p3)c-competitive algorithm for the �le allocationproblem on N against adaptive on-line adversaries.Proof. Let � be the natural potential function for Alg. From Theorem 3, we have that � is astrict one-step potential function. We use it to de�ne a new one-step potential function � for theSteiner Based algorithm as follows: Let hn be the history of SB. This history explicitly de�nes thehistory of the current version of Alg that SB simulates, denoted bhn.Let �n be the sequence of requested vertices already fed to Alg since the last initialization. (weuse �n to denote the set of these vertices as well). Finally let A denote the adversary's currentcon�guration, let B denote the on-line algorithm's current con�guration, and let bB denote theon-line Steiner tree algorithm's con�guration. The potential function for SB is:�(hn; A) = f(�+ 2) ��(bhn; A) + � ��(bB)g �D;where � and � de�ned by �(bB) = T (bB)�(bhn; A) = infT f�(bhn; T)g;where T ranges over all subtrees of N such that �n [A � T . (Notice that �(bhn; T) is de�ned forall trees T .) 15

www.manaraa.com

Clearly � is nonnegative as � is a potential function, and the weight of a Steiner tree is alwaysnonnegative.Our proof proceeds by analyzing separately the change in � due to an adversary change ofcon�guration (an adversary move) and the change in � due to the service of a request by both theadversary and SB, assuming that the adversary (but not SB) does not change its con�guration,thus accounting for both the on-line and the adversary work following a request.Throughout, let T0 denote the subtree that minimizes �(bhn; T) before an analyzed event takesplace. We think of Alg as playing against a Steiner tree adversary Adv1 that maintains T0 as itscon�guration. We shall bound the change in the potential by extracting a new con�guration T1for the Steiner tree adversary in the range over which the in�mum in � is taken. The new valueof � will only be less than or equal to the value of � on that new con�guration.The following fact, an application of Theorem 3 to the on-line Steiner tree problem, is useful:Fact 6 Let T0, T1 be trees, such that T0 is a subtree of T1. Then, for every history bhn of Alg�(bhn; T1)��(bhn; T0) � c � distSt(T0; T1):Adversary Move.The adversary replicates or deletes copies of the �le changing its con�guration from A to A0.The change in potential is �� = (�+ 2)D ���;since there is no change in the on-line algorithm's con�guration, and thus �� = 0.We proceed with the analysis according to the management operation initiated by the adversary:Replication. Consider a replication initiated by the adversary from processor p 2 A to a subsetof processors Q (i.e., A0 = A[Q). The cost incurred is dist(A;A0) = D � T (Q[fpg). The Steinertree adversary,having con�guration T0 � �n [A, can also add to its tree the vertices in Q, endingwith a Steiner tree of �n [A0, by letting T1 = T (T0; Q). Since p 2 T0, distSt(T0; T1) � T (Q[fpg).Therefore, we can bound the change in potential by�� = (�+ 2)D ���� (�+ 2)D � f�(bhn; T1)��(bhn; T0)g� (�+ 2)D � c � distSt(T0; T1)� (�+ 2)c �D � T (Q [fpg)= (�+ 2)c � dist(A;A0):16

www.manaraa.com

Deletion. If the adversary deletes copies of the �le, incurring no cost, then A0 � A. Thus wemay choose T1 = T0, so that T1 � �n [A � �n [A0. Therefore,�� = (�+ 2)D ��� � (�+ 2)D � f�(bhn; T1)��(bhn; T0)g = 0:Request Analysis.We analyze di�erent request types separately. For any request the change in the potential isbounded above by a constant times the cost of the adversary to serve the request (not includingits move cost) minus the expected work done by SB for serving the request and for changingcon�guration.Read Request.The cost of algorithm SB on a read request � initiated at a processor r is d(B; r). In case itreplicates, its replication cost is exactly D times the cost of Alg on the request at vertex r. Thusits expected cost for � isE(CostSB(hn; �)) = d(B; r) + 1D �D � E(CostStAlg(bhn; r))� 2E(CostStAlg(bhn; r)):The last inequality follows because the cost of any Steiner tree algorithm, whose current con�gu-ration, bB, is a tree spanning the vertex set B, to serve a request at r, is at least the cost of addingsome path from a vertex in B to r, bounded below by d(B; r) (Note that the expectation of Alg'scost is taken only over its own coin tosses).The probability that SB's con�guration is changed is 1D . Therefore, with probability 1� 1D thepotential function does not change. Therefore,E(��) = (1 � 1D) � 0 + 1D �D � E((� + 2) ���+ � ���)= (� + 2) � E(��) + � � E(��);where the expected change in � and � is the conditional expected change, in the case that SBdecides to replicate, taken only over the coin tosses of Alg.We proceed with analyzing each of the potential terms. Suppose that the Steiner tree algorithmAlg with the current subtree bB changes to a (possibly random) con�guration bB0, following thenew request at r. The change in � isE(��) = E(T (bB0))� T (bB) = distSt(bB; bB0) = E(CostStAlg(bhn; r)):17

www.manaraa.com

We now analyze the change in � when SB decides to replicate. SB feeds Alg with a new requestat vertex r, and therefore the new history bhn+1 of Alg consists of the request sequence �n+1 = �nr.Let the Steiner tree adversary, having current con�guration T0 � �n [A add to its tree theminimal path from the closest vertex to r in A, incurring cost d(A; r) and ending with a Steinertree T1 = T (T0; frg) � �n+1 [A. Using that � is a one-step (and therefore also a two-step)potential function for Alg, we obtain thatE(��) � E[�(bhn+1; T1)]��(bhn; T0)� c � CostStAdv(T0; r) � E(CostStAlg(bhn; r))= c � d(A; r)� E(CostStAlg(bhn; r)):As CostAdv(A; �) = d(A; r), we conclude that the expected change in � is:E(��) = (�+ 2) � E(��) + � � E(��)� (�+ 2) � fc � CostAdv(A; �)� E(CostStAlg(bhn; r)g+ � � E(CostStAlg(bhn; r))= (�+ 2)c � CostAdv(A; �)� 2E(CostStAlg(bhn; r))� (�+ 2)c � CostAdv(A; �)� E(CostSB(hn; �)):Write Request.We follow the same steps as in the analysis of the read request. The cost of SB on a writerequest ! initiated at processor w consists of the cost of the write T (B [fwg), and in case SBdecides to delete, it also pays the cost of the migration. Therefore SB's expected cost isE(CostSB(hn; !)) = T (B [fwg) + 1�D �D � d(B;w)� T (B) + �+1� � d(B;w):As bB spans B, T (B) is a lower bound on T (bB), it now follows thatE(CostSB(hn; !)) � T (bB) + �+1� � d(B;w):Since SB changes its con�guration only with probability 1�D , we have that the potential functiondoes not change with probability 1� 1�D . Therefore,E(��) = (1� 1�D) � 0 + 1�D �D � f(� + 2) ���+ � ���g= �+2� ���+��:As before, the change in � and � is the conditional change, in case that SB deletes.18

www.manaraa.com

Since with probability 1=�D the new con�guration of Alg is fwg and its new history, denotedbhw, consists of a single request at w, we have�� = T (fwg)� T (bB) = �T (bB);�� � �(bhw; T (A [fwg))��(bhn; T0):This follows because a new version of Alg is initialized, and the new Steiner tree adversary canobviously choose T1 = T (A [fwg) as its con�guration in order to cover the vertices in A and w.Suppose that instead of initializing a new version of Alg with initial con�guration w, Alg wereto receive a new request at w, resulting with the �ctitious history bhn+1. Following the read requestanalysis, the Steiner tree adversary can choose the con�guration T 01 = T (T0; fwg) so thatE[�(bhn+1; T 01)]��(bhn; T0) � c � CostStAdv(T0; w)� E(CostStAlg(bhn; w))� c � d(A;w)� d(B;w):Alg is strictly competitive and, hence by Theorem 3, �(bhw; fwg) = �0 = 0. Therefore,�(bhw; T (A [fwg)) = �(bhw; T (A[fwg))��(bhw; fwg)� c � distSt(fwg; T (A [fwg)) = c � T (A [fwg):Since � is nonnegative we obtain�� � �(bhw; T (A [fwg)) + �+1�+2 � fE[�(bhn+1; T 00)]��(bhn; T0)g� c � T (A [fwg) + �+1�+2 � fc � d(A;w)� d(B;w)g:Clearly, d(A;w) � T (A [fwg), since a Steiner tree spanning A [fwg includes some path from avertex in A to w. Hence, �� � 2�+3�+2 c � T (A [fwg)� �+1�+2 � d(B;w):The cost of the write request to the adversary is CostAdv(A;!) = T (A [fwg). We conclude thatE(��) = �+2� ���+��� 2�+3� c � T (A [fwg)� �+1� � d(B;w)� T (bB)� 2�+3� c � CostAdv(A;!)� E(CostSB(hn; !)):Summarizing the above case analysis, SB is maxf2�+3� ; �+2g�c-competitive against the adaptiveon-line adversary; maxf2�+3� ; �+ 2g has its minimum at � = p3.19

www.manaraa.com

The competitive ratio in Theorem 5 is best possible up to a constant factor for any network asfollows from the lower bound given in Theorem 23.Note that, although the cost incurred by the Steiner-Based algorithm for serving a write requestinitiated at w is assumed to be the optimal inherent cost; i.e., the weight of a minimum Steinertree spanning w and all processors holding a copy of the �le (i.e., T (B[fwg)), the proof holds evenif we assume that the on-line cost is the minimum path length from w to the current con�gurationplus the weight of the on-line Steiner tree that Alg maintains (i.e., T (bB)+d(B;w)). This variationis required for the analysis of the distributed version of the algorithm in Section 9.4.In order to explicitly characterize the competitive ratio for the �le allocation problem on avariety of networks, we present the following results on the competitive ratio of the on-line Steinertree problem.De�ne the greedy on-line Steiner tree algorithm as follows: Given a request at vertex v, greedyadds to its current subtree the shortest path in G from a vertex in its subtree to v.As stated in Section 4.1 Imase and Waxman [IW] prove that the greedy steiner tree algorithmis dlog ne-competitive. In fact in [ABF1, WY2] are di�erent proof proving the followingTheorem 7 For any weighted graphG on n nodes, the greedy Steiner tree algorithm is O(minflog n; log(Diam)g)-competitive.We also have the following easy to verify facts.Fact 8 The greedy Steiner tree algorithm is 1-competitive for trees and for uniform completegraphs.Fact 9 The greedy Steiner tree algorithm is 2-competitive for the ring.Applying Theorem 5 we concludeTheorem 10 For every network on n processors, SB using greedy as a Steiner tree algorithm isan O(minflog n; log(Diam)g)-competitive �le allocation algorithm against adaptive on-line adver-saries. It is O(1)-competitive for processors on a ring, for trees, and for uniform networks.Finally, the result of [BBKTW] implies the following corollary.Corollary 11 For every network on n processors, if there exists a strictly c-competitive Steinertree algorithm against adaptive on-line adversaries on N , then there exists a computable deter-ministic O(c2)-competitive algorithm for the �le allocation problem. In particular there exists acomputable deterministic O(1)-competitive algorithm for processors on a ring.Proof. The corollary follows from the fact that for any �nite network N , the natural potentialfunction for any Steiner tree algorithm for N is computable.20

www.manaraa.com

6 Uniform NetworksA uniform network topology is one where the underlying graph is the complete graph with alledge weights equal to 1.The �le allocation problem in a uniform network de�nes the following costs for an algorithm:The cost of a read at processor p is 0 if p contains a copy of the �le and 1 otherwise.The cost of a write at processor p equals to the number of �le copies in the network if p doesnot contain a copy of th �le. If p contains a copy of the �le then the write's cost is equal to thenumber of �le copies in the network minus 1.The cost for a �le replication over an edge is D.We give an optimal deterministic algorithm for �le allocation on uniform network topologies.We present an optimal 3-competitive, deterministic �le allocation algorithm for uniform networks.Let P denote the set of processors in the network.Algorithm Count.Count is de�ned for each processor p 2 P separately. It maintains a counter c, and performs thefollowing algorithm. We say that Count is waiting, if there is a single copy of the �le and theprocessor holding the �le is performing step 4 of the algorithm. Initially, set c := 0. If p holds acopy of the �le, begin at step 4.1. While c < D, if a read is initiated by p, or if a write is initiated by p, and Count is waiting,increase c by 1.2. Replicate a copy of the �le to p.3. While c > 0, if a write is initiated by any other processor, decrease c by 1.4. If p holds the last copy of the �le, wait until it is replicated by some other processor.5. Delete the copy held by p.6. Repeat from step 1.Theorem 12 Algorithm Count is 3-competitive for uniform networks.Proof. Fix a processor p. One iteration of steps 1{6 at p is named a phase. Note that if Countis waiting then it is executing step 4 in the single processor holding a copy of the �le, and it isexecuting step 1 in all the other processors. Count's cost is charged on individual processors asfollows: 21

www.manaraa.com

1. A processor initiating a read is charged the cost of the read.2. If Count is waiting, a processor initiating a write is charged the cost of the write.3. If Count is not waiting, and a write is initiated, the cost of 1 is charged at each processorholding a copy, except for the initiating processor. Note that the sum of costs charged hereis exactly the cost of that write.4. The cost D of replicating is charged at the processor receiving the copy.The adversary's cost is charged the same, except that a replication is not charged. Rather, itregisters a debit of D at the processor receiving the copy. That debit is paid (and a cost of D ischarged) when the copy is deleted. Debits are initially set to 0 for processors not holding copiesand to D for processors that initially do hold a copy. Note that the charging of the adversary'scost minus the sum of initial debits is a lower bound on its actual cost, because at the end of thesequence some processors may have positive debit.At the beginning Count is waiting after all but one copy are deleted, so that no cost is incurred.Now, during a phase of a processor p, Count's cost charged to p is at most 3D. Steps 1 and 2cause a charge of D each. Step 3 causes a charge of D. The total cost of Count is the sum of costsover all phases of all processors. There can be at most n partial phases (which are not over).The adversary's cost during a full phase (note that the duration of a phase is determined byCount) is at least D. If the adversary ever deletes a copy from the processor during a phase, itis charged D. Otherwise, it either holds a copy at that processor when Count begins step 3 (andtherefore not waiting), so it pays D during that step; or, it does not hold a copy at the end ofstep 1, and since it could not delete during that step, it must have been charged at least D for therequests of step 1. The reason is that during step 1 the processor initiated a total of D requests,counting read requests and write requests initiated while Count was waiting.7 Tree NetworksA tree network topology is one where the underlying graph is a tree.We give an optimal randomized memoryless algorithm against adaptive on-line adversaries for�le allocation on tree network topologies.We then give an optimal deterministic memoryless algorithm for continuous trees, and �nallyshow how to use the ideas in that algorithm to obtain a nearly optimal deterministic algorithmfor discrete trees. 22

www.manaraa.com

For the proofs of the algorithms we need the following de�nitions.De�nition. Let x; y, and z be points on a tree.The path between x and y is denoted P (x; y).The slack of x; y, and z is de�ne bys(x; y; z) = 12(d(x; y) + d(x; z)� d(y; z)):The subsequent lemma is a simple consequence of the slack de�nition.Lemma 13 The slack of x; y, and z has the following properties:s(x; y; z) = 8>><>>: d(x; y) if y 2 P (x; z)d(x; z) if z 2 P (x; y)0 if x 2 P (y; z) (3)s(x; y; z) + d(y; z) � maxfd(x; y); d(x; z); d(y; z)g (4)s(x; y; z)� s(y; x; z) = d(x; z)� d(y; z): (5)7.1 A 3-Competitive Randomized Memoryless AlgorithmRandomized Trees Algorithm (RT).At all times the algorithm maintains a subtree of the processors holding copies of the �le.Upon receiving a read request initiated at node r, the algorithm serves it. Let b be the closestprocessor to r holding a copy of the �le. With probability 1=D replicates copies of the �le alongthe edge from b to r.Upon receiving a write request initiated at node w, the algorithm serves it, and with probability1=D deletes all copies of the �le, leaving only one copy at the processor closest to w, and thenwith probability 1=2, migrates the �le to w.Theorem 14 Algorithm RT is 3-competitive for �le-allocation on trees against adaptive on-lineadversaries.Proof. We give a two-step potential function proof. Let B denote the on-line con�guration (i.e.,the set of processors holding a copy of the �le). Let A denote the adversary con�guration. Thepotential function for RT is� = D � f3 � (T (A [B)� T (B)) + T (B)g:23

www.manaraa.com

We will analyze separately the potential components:	 = D � (T (A [B)� T (B));� = D � T (B);so that � = 3	 +�.Our proof proceeds by analyzing separately the change in � due to an adversary con�gurationchange and the change in � due to the service of a request by both the adversary and the algorithm,assuming that the adversary does not change its con�guration, thus accounting for both the on-lineand the adversary work following a request.� is clearly nonnegative since T (B) � T (A [B).We start with analyzing con�guration changes made by the adversary.Adversary Move.Clearly the only potential component that changes is T (A [B).A deletion made by the adversary can only decrease it.If a replication is made by the adversary from some node p 2 A to q, resulting with a newcon�guration A', at a cost D � d(p; q), then since T (A0 [B) � T (A [B) + d(p; q) we get�� = 3D � (T (A0 [B)� T (A [B)) � 3D � d(p; q):Request Analysis.We analyze reads and writes separately. For any request we show that the change in thepotential function is bounded above by 3 times the the adversary's cost for serving the request(not including its move cost) minus the expected cost RT incurs for both serving the request andfor changing con�guration.Read Request.Consider a read request � initiated at a processor r. Let b be the closest processor to r in B.Let a be the closest processor to r in T (A).The cost incurred by algorithm RT on the request at r is d(b; r). In case it replicates, itsreplication cost is D � d(b; r). Thus its expected cost for � isE(CostRT(�)) = d(b; r) + 1D �D � d(b; r)= 2d(b; r):24

www.manaraa.com

The probability that RT replicates is 1D . Therefore, with probability 1� 1D the potential functiondoes not change.The increase in � in the case RT replicates is equal to the length of the replication path:E(��) = (1� 1D) � 0 + 1D �D � d(b; r)= d(b; r):We now turn to analyzing the change in 	.Claim 15 Given an arbitrary point r, let b be the closest point to r in B, and let a be the closestpoint to r in T (A). The change in 	 for a replication from b to r is�	 = �D � s(b; a; r):Proof of Claim 15. If a 2 P (b; r) then T (A[B), but not T (B), has included the path from b toa before the replication. After the replication T (B) includes this path and therefore 	 decreasesby D � d(b; a).Similarly if r 2 P (b; a) then T (A [B), but not T (B), has included the path from b to rbefore the replication. After the replication T (B) includes this path and therefore 	 decreases byD � d(b; r).Finally if b 2 P (a; r) then both T (B) and T (A [B) increase by the same distance, and thus�	 = 0.The claim follows from property (3) of Lemma 13.Using Claim 15 and property (4) of Lemma 13 we getE(�) = (1 � 1D) � 0 + 1D � (�D � s(b; a; r))= �s(b; a; r)� d(a; r)� d(b; r):Therefore the expected change in � isE(��) = E(3�	+��)� 3(d(a; r) � d(b; r)) + d(b; r)= 3d(a; r) � 2d(b; r)= 3 �CostAdv(�)� E(CostRT(�)):25

www.manaraa.com

Write Request.Consider a write request ! initiated at a processor w. Let b be the closest processor to w in B.Let a be the closest processor to w in T (A).The cost incurred by algorithm RT on the write request at w is T (B[fwg). In case RT decidesto delete all copies and to migrate the last �le copy, it incurs an additional cost for the migrationof D � d(b; w). Thus its expected cost for ! isE(CostRT(!)) = T (B [fwg) + 12D �D � d(b; w)� (T (B) + d(b; w)) + 12d(b; w)= T (B) + 32d(b; w):Since RT deletes all �le copies but one with probability 1=D we haveE(��) = (1� 1D) � 0 + 1D � (�D � T (B))= �T (B):We analyze the change in 	 separately for the change in the case that RT decides to deleteall copies but not to migrate the last �le copy, denoted �	1, and the change in the case that RTdecides to delete all copies and to migrate the last �le copy to w, denoted �	2.We need another claim.Claim 16 Given an arbitrary point w, let b be the closest point to w in B. The change in 	 fora deletion of all copies in B except for one at b is�	1 � D � (T (A) + s(a; b; w)):Proof of Claim 16. For any edge, 	 may increase by D times its weight if that edge belongsto T (A [fbg) but not to T (A [B) n T (B).Consider the set of edges in S = T (A [fbg) n T (A).If a 2 P (b; w) then S is empty. Otherwise S includes the path from a to b, P (a; b).But if w 2 P (a; b) and w 6= a;w 6= b, then P (a; b) belongs to T (A [B) n T (B) as well.Therefore 	 increases by at most D � T (A) plus D � d(a; b) when b 2 P (a;w) and otherwise 	increases by at most D � T (A), and thus by at most D � (T (A) + s(a; b; w)).To analyze the change in 	 in the case RT deletes all copies and migrates the last �le copy tow, we look at the con�guration change as obtained by �rst replicating new �le copies along thepath from b to w and then deleting all �le copies except the one at w.26

www.manaraa.com

Claim 15 implies the change in 	 for the imaginary replication from b to w is �D � s(b; a; w).For the deletion the increase in 	 can be at most its �nal value D � T (A [fwg). Thus we get�	2 � D � (T (A [fwg)� s(b; a; w)):Therefore, using property 5 of Lemma 13 we obtain that the total expected change in 	 isE(�) = (1 � 1D) � 0 + 12D � (�	1) + 12D � (�	2)� 12(T (A) + s(a; b; w)) + 12(T (A [fwg)� s(b; a; w))= T (A) + 12d(a;w) + 12(s(a; b; w)� s(b; a; w))= T (A) + 12d(a;w) + 12(d(a;w)� d(b; w))= T (A [fwg)� 12d(b; w):Therefore the expected change in � for the write request ! isE(��) = E(3	 + �)� 3(T (A [fwg)� 12d(b; w)) � T (B)= 3 � T (A [fwg)� (T (B) + 32d(b; w))= 3 � CostAdv(!)� E(CostRT(!)):This concludes the proof of the theorem.7.2 A 3-Competitive Determistic Algorithm for Continueous TreesWe next give a 3-competitive algorithm for continuous trees. The proof uses the same potentialfunction we have used to prove the randomized algorithm in section 7.1. Our deterministic al-gorithm makes actions that a�ect the potential function at most as much as in the randomizedcase.At all times our algorithm maintains a subtree B of the processors holding copies of the �le.We describe how this subtree is changed in response to each request.In our algorithm we use a deleting procedure to perform two deletion operations:1. A fraction-deletion of an �-fraction of the weight of a subtree from the leaves towards somenode in the subtree. 27

www.manaraa.com

2. A �xed-deletion of some �xed quantity from the subtree from the leaves towards some leaf ofthe subtree.This procedure will be described following the description of the algorithm.Continuous Trees Algorithm (CT).Upon receiving a read request initiated at node r, serve it, then let b be the nearest point in Bto the request position r. Enlarge the subtree B along the path from b towards r a distance of1Dd(b; r).Upon receiving a write request initiated at processor w, serve it, use a fraction-deletion to deletean overall of 1=D-fraction of the weight of the subtree B from the leaves towards w. The performa tree migration as follows: Let b be the nearest point in B to the request position w. Enlarge thesubtree B along the path from b towards w a distance of 12Dd(b; w), Let B 0 denote the new CTcon�guration. Let b0 denote the nearest point in B 0 to w. Use a �xed-deletion to delete an overallweight of d(b0; b) from the subtree B 0 from the leaves towards b0.The deleting procedure :1. Fixed-deletion of an overall weight of x from an edge (v;w) towards some node u. As-sume w.l.o.g that v 2 P (u;w). This is de�ned by deleting from w towards v a weight ofminfx; d(v;w)g. If x > d(v;w) we say the deletion modulo equals x� d(v;w), otherwise it is0.2. Fixed-deletion of an overall weight of x from a subtree S towards some leaf, u, of S. This isde�ned recursively as follows: If S contains a single edge use operation (1) of this procedure.Otherwise let v be the node adjacent to u. While x > 0, repeat for each branch rooted at v,recursively deleting an overall of x from the branch towards v, and set x to be equal to thedeletion modulo. Finally if x > 0 use operation (1) of this procedure to delete a weight of xfrom (u; v).3. Fraction-deletion of an overall of an �-fraction (� < 1) of the weight of a subtree S from theleaves towards a node u in S. This is de�ned recursively as follows: If u is not a leaf of Sthen for each branch rooted at u, recursively delete an overall �-fraction of the weight of thatbranch towards u. Otherwise, u is a leaf of S. If S contains a single edge (u; v) use operation(1) of this procedure to delete � � d(u; v) from the edge weight towards u. Otherwise let v bethe node adjacent to u. For each branch rooted at v, recursively delete an overall �-fractionof the weight of that branch towards v. Finally use operation (2) of this procedure to delete� � d(u; v) from the subtree weight towards u.28

www.manaraa.com

Theorem 17 Algorithm CT is 3-competitive for �le-allocation on continuous trees.Proof. Let B denote the on-line con�guration. Let A denote the adversary con�guration. Weuse the same potential function function as in the proof for the randomized algorithm in the proofof Theorem 14. � = D � f3 � (T (A [B)� T (B)) + T (B)g:As before we will analyze separately the potential components:	 = D � (T (A [B)� T (B))� = D � T (B);so that � = 3	 +�.From the proof of Theorem 14 we have that � is nonnegative and that the change in � overthe con�guration changes made by the adversary is at most 3 times the adversary cost for thosechanges.Thus we turn to the analysis of the read and write requests.Request Analysis.Read Request.Consider a read request � initiated at a processor r. Let b be the closest processor to r in B.Let a be the closest processor to r in T (A).The cost incurred by algorithm CT on the request at r isCostCT(�) = d(b; r) +D � 1Dd(b; r)= 2d(b; r):The increase in � is equal to the length of the replication path:�� = D � 1Dd(b; r) = d(b; r):We now turn to analyzing the change in 	.Let c be the point at distance 1Dd(b; r) from b towards r. Claim 15 implies that if ac is theclosest point to c in T (A) then: �	 = �D � s(b; ac; c):We have the following claim: 29

www.manaraa.com

Claim 18 Given an arbitrary point r, let b be the closest point to r in B, and let ar be the closestpoint to r in T (A). Let c be some point in P (b; r), and let ac be the closest point to c in T (A).Let � = d(b; c)=d(b; r). s(b; ac; c) � � � s(b; ar; r):Proof of Claim 18. If b 2 P (ac; c) then ac = ar and hence also b 2 P (ar; r) and therefores(b; ac; c) = s(b; ar; r) = 0.If c 2 P (b; ac) then we haves(b; ac; c) = d(b; c) = � � d(b; r) � � � s(b; ar; r):Finally, if ac 2 P (b; c) then ac = ar and therefores(b; ac; c) = d(b; ac) � � � d(b; ac) = � � s(b; ar; r):Thus using Claim 18 we conclude that the change in 	 is at most as in the proof of Theorem 14:�	 = �D � s(b; ac; c) � �s(b; a; r):The rest of the read request analysis is the same as in the proof of Theorem 14.Write Request.Consider a write request ! initiated at a processor w. Let b be the closest processor to w in B.Let a be the closest processor to w in T (A).The cost incurred by algorithm CT for the write request at w consists for the cost of the writeplus an additional cost for the replication during the tree migration.CostCT(!) = T (B [fwg) +D � 12Dd(b; w)� (T (B) + d(b; w)) + 12d(b; w)= T (B) + 32d(b; w):Algorithm CT deletes an overall 1=D-fraction of the weight of the subtree B. Then in the treemigration it �rst enlarges the subtree a distance of 12Dd(b; w) and then deletes the same weight ofthe weight of the new subtree. Thus overall the tree migration does not change the weight of B.Therefore �� = �D � 1DT (B) = �T (B)30

www.manaraa.com

as in the proof of Theorem 14.We now turn to analyze the change in 	 over the con�guration changes made by CT. Again,we would like to show that this change is at most the expected change for algorithm RT, analyzedin the previous section.We have the following claims:Claim 19 Consider a deletion made by the algorithm from a leaf v of B to a node u in B. Letav denote the nearest point to v in T (A). Then�	 = s(u; av; v):Proof of Claim 19. If v 2 P (u; av) then T (A [B) does not change while T (B) increases byexactly d(u; v), and thus �	 = d(u; v).If u 2 P (av; v) then both T (B) and T (A [B) decrease by d(u; v) so that �	 = 0.Finally, if av 2 P (u; v) then while T (B) decreases by d(u; v), T (A[B) decreases by only d(av; v)and therefore �	 = d(u; av).Therefore the claim follows from property 3 of Lemma 13.Claim 20 Consider some edge (u; v) of B. Let y be point in B such that v 2 P (u; y) and let x bea node at distance � � d(u; v) from y towards u (0 � � � 1). Let av denote the nearest point to vin T (A), and let ay denote the nearest point to y in T (A). Thens(x; ay; y) � � � s(u; av; v):Proof of Claim 20. If v 2 P (u; av) thens(u; av; v) = d(u; v) = 1�d(x; y) = 1�s(x; ay; y):Otherwise, since v 2 P (u; y), we have that av = ay.If x 2 P (av; v) then since v 2 P (u; y) we get that also x 2 P (ay; y) Thus in this case s(x; ay; y) =0. Finally, if av 2 P (x; v) then since x is at distance �d(u; v) � d(u; v) from y towards u we getthat also av 2 P (u; v). Therefores(x; ay; y) � d(x; ay)= d(x; y)� d(ay; y)31

www.manaraa.com

� � � d(u; v)� d(av; v)� � � (d(u; v)� d(av; v))= � � d(v; av)= � � s(u; av; v):We now would like to bound the change in 	 by comparing it to the appropriate expectedchange for RT analyzed in the proof of Theorem 14.Consider an algorithm C1 with con�guration B that deletes all �le copies leaving one at b.Viewing the deletion of copies as done edge by edge starting with leaves towards b, CT performsa fraction deletion that is de�ned so that for every edge (u; v) of B deleted by C1 from v to u, CTdeletes an exact weight of 1Dd(u; v) from some point y in B such that v 2 P (u; y) towards u.Consider only a deletion of 12Dd(u; v) made by CT for each edge, it follows from Claim 19 andClaim 20 that the change in 	 for the deletions by CT is at most 12D times the change for thedeletions by C1.From Claim 16 we get that the change in 	 for these deletion operations is�	1 � 12D �D � (T (A) + s(a; b; w))= 12(T (A) + s(a; b; w)):Consider now an algorithm C2 that �rst replicates from b along the path to w. The appropriateoperation made by CT is the tree enlargement from b towards w a distance of 12Dd(b; w).Using Claim 18 we have that if c is the nearest point to w after CT's replication, and ac thenearest point in A to c then�	2 = � 12DD � s(b; ac; c) � �12s(b; a; w):Now let C2 delete all �le copies except the one at w. Again, viewing the deletion as done fromthe leaves through b and upto w, CT performs a fraction deletion that is de�ned so that for everyedge (u; v) in B deleted by C2 from v to u, CT deletes an exact weight of 1Dd(u; v) from somepoint y in B such that v 2 P (u; y) towards u, and for every edge (u; v) in P (b; w) deleted by C2from v to u, CT deletes an exact weight of 12Dd(u; v) from some point y in B such that v 2 P (u; y)towards u.Again considering a deletion of only 12Dd(u; v) for each edge made by CT, we obtain fromClaim 19 and Claim 20 that the change in 	 for the deletions by CT is at most 12D times the32

www.manaraa.com

change for the deletions by C2, therefore�	3 � 12D �D � T (A [fwg) = 12T (A [fwg):Since all con�guration changes made by CT have been accounted for we get that the totalchange in 	 is �	 = �	1 +�	2 +�	3� 12(T (A) + s(a; b; w)) + 12(T (A [fwg)� s(b; a; w))which is at most the expected change for RT.The rest of the write request analysis is the same as in the proof of Theorem 14.We now show that the continuous trees algorithm CT yields a very simple deterministic algo-rithm for discrete trees.Given a continuous trees algorithm CO we de�ne discrete trees algorithm DI as follows: DIsimulates CO on the input request sequence. We may assume CO always keeps a tree con�guration,T , since it only reduces its cost. DI holds �le copies at all processors included in T and may alsohave copies at the nodes adjacent to the leaves of T . For any edge (u; v) such that u 2 T andv =2 T , let t be the location of the leaf of T in (u; v), DI works as follows:1. The �rst time that d(u; t) � 2=3 � d(u; v), DI replicates �le onto v.2. The �rst time that d(u; t) � 1=3 � d(u; v), DI deletes copy at v.Theorem 21 Given a �le allocation algorithm CO for continuous trees, for any sequence of re-quests the cost of the discrete trees algorithm DI is at most 3 times CO's cost.Proof. It follows from algorithm DI de�nition that for any read request the distance from thatread to the closest leaf in T is at least 1=3 the distance to the closest leaf in DI's con�guration.The cost for DI over a write request may be larger than that of CO by the weight of edges(u; v) including leaves of T but since both u and v hold �le copies we infer that T includes at least1=3 of the edge weight.For an edge (u; v), every deletion from v and the next replication into v can be amortizedagainst a replication over distance at least 1=3 � d(u; v) by CO.Applying Theorem 21 on algorithm CT we obtain a 9-competitive algorithm for discrete trees.33

www.manaraa.com

8 Lower Bounds for File Allocation8.1 A Lower Bound of 3 for 2-ProcessorsThe following theorem gives a lower bound on the competitive ratio of any �le allocation (or �lemigration) algorithm in any network topology.Theorem 22 Let N be any network over a set of at least two processors. The competitive ra-tio of any randomized on-line �le allocation/migration algorithm for N against adaptive on-lineadversaries is at least 3.Proof. Let two di�erent processors in the network be p and q, and assume the distance betweenp and q is 1.Assume the on-line algorithm holds a copy of the �le at processor p. We de�ne 3 di�erentadaptive on-line adversaries as follows:� The p-adversary: holds a single copy of the �le at p.� The q-adversary: holds a single copy of the �le at q.� The jumping-adversary: holds a single copy of the �le at a processor not holding a copy ofthe �le by the on-line algorithm (if such exists and otherwise the adversary's con�gurationremains unchanged) ;I.e., at processor q.Now a write request is generated at q.The cost for this request for both the q-adversary and the jumping-adversary is 0. The cost forthe request for the p-adversary as well as the on-line algorithm is 1.Consider next the cost incurred for con�guration changes. The p-adversary and the q-adversarynever change their con�guration. On-line replications do not change the adversaries con�gurations.An on-line deletion (or migration) may cause the jumping-adversary to change its con�gurationincurring a cost of D. Except for the �rst deletion, the cost for �le copies deletions can be chargedD, against the cost for the replication.We therefore conclude that over the entire sequence of events the online cost is equal to thecost of the 3 adversaries up to an additive term, implying the lower bound.Black and Sleator [BS] used a result of Karlin et al. [KMRS] to get a lower bound of 3for deterministic data migration algorithms. If requests are limited to write requests only, the34

www.manaraa.com

�le allocation problem collapses to the data migration problem, and therefore for deterministicalgorithms the result in [BS] can be used to get the lower bound above.8.2 An
(log n) Lower Bound on Arbitrary Network TopologiesWe now proceed to show, that in certain networks, the lower bound can be as bad as
(log n),where n is the number of processors in the network. The following theorem relates �le allocationlower bounds to Steiner tree lower bounds.Theorem 23 For every network N , if there exists a c-competitive on-line �le allocation algorithmfor N , then there exists a strictly c-competitive on-line Steiner tree algorithm for N .The theorem holds for any type of adversary. However the proof of Theorem 23 is stated interms of competitive randomized algorithms against oblivious adversaries. The proof for adaptiveadversaries is similar.In the proof of Theorem 23 we use the following de�nition and lemma.De�nition. Let A be a c-competitive randomized on-line �le allocation algorithm in a networkN . Let the initial con�guration be a single copy at a vertex v1 of N . Let � be a sequence ofrequests to A. A (�; v; �)-replicate forcing sequence � is a sequence of read requests at v, such thatan optimal algorithm serving �� must have a copy at v at the end, and A has a copy at v at theend with probability 1 � �. A (�; �)-delete forcing sequence � is a sequence of write requests atv1, such that an optimal algorithm serving �� must end in the con�guration fv1g, and A ends inthat con�guration with probability 1� �.Notice that if A is c-competitive then for every �, v, � there must be a (�; v; �)-replicate forcingsequence. This is because each read request at v incurs an expected cost of at least the minimumdistance in the network times �, unless A replicates to v with probability greater than 1��, whereasthe adversary's cost is at most D times the maximum distance in the network (for replicating tov). A similar argument shows that for every �, �, there is a (�; �)-delete forcing sequence.Lemma 24 Let N be a network over a set P of processors. Let A be a randomized c-competitiveon-line �le allocation algorithm in N . Let � be an arbitrary request sequence for A. Then,there exists a randomized on-line Steiner tree algorithm B for N with the following property:Let � = v1; v2 : : : ; vn be a sequence of vertices input to B. Let the initial con�guration for A befv1g. Let 1 > � > 0. Let � be a (�; �)-delete forcing sequence for A. Let % = %2%3 � � � %n bethe following sequence. %2 is a (��; v2; �)-replicate forcing sequence. %3 is a (��%2; v3; �)-replicateforcing sequence. In general, %i, 2 � i � n, is a (��%2 � � � %i�1; vi; �)-replicate forcing sequence.35

www.manaraa.com

Then, B's expected cost to serve � is at most 1D times the expected cost incurred by A to serve %after serving �� , plus �, where � = �jP jW , W being the sum of weights of all edges in N .Proof. We construct an on-line Steiner tree algorithm B for N as follows. Given input �, wede�ne the trees T1; T2; : : : ; Tn chosen by B in response to � as follows. we simulate A on �� . IfA's con�guration is fv1g (this happens with probability 1 � �), then T1 = (fv1g; ;). OtherwiseT1 = T2 = T3 = � � � = Tn is an arbitrary spanning tree of N . Now, in the �rst case, we give A %2,and execute the following procedure, with j = 2.Let Tj := Tj�1. Repeat for r = 1; : : : ; j: give the rth request of %j , as input to A. For eachprocessor, p, that A replicated from in response to the input request sequence, let Q be the set ofprocessors that the �le was replicated to from p. Set Tj := T (Tj; Q).If A does not have a copy at v2 after it serves %2, then extend T2 to an arbitrary spanning treeof N , and set T3 = � � � = Tn := T2. In general, if the �rst j � 1 requests of � are served, and B'stree does not span N , then execute the above procedure, and if A does not have a copy at vj inthe end, then extend Tj to an arbitrary spanning tree of N , and set Tj+1 = � � � = Tn := Tj.It is obvious from the construction, that the edges added to the Steiner tree in the aboveprocedure are exactly the edges along which A replicates. Therefore, in all executions of A inwhich A replicates to the vertices v1; v2; v3; : : : ; vn, B's cost is at most 1=D times the cost A incurson %. The probability that this does not happen is at most n� � jP j�. In this case, B pays thesize of an arbitrary spanning tree of N , which is at most W .Proof of Theorem 23. Assume the opposite. So, let A be an on-line �le allocation algorithmsuch that E(costA(�)) � c �CostOPT(�) + a for every request sequence �, while no on-line Steinertree algorithm in N can achieve a ratio better than b > c. Let b > b0 > c. Let B0 be the on-lineSteiner tree algorithm constructed from A by Lemma 24, taking some � = �0, � = �0 = ;. Thereexists a sequence �0, such that B0's expected cost on �0 is at least b0 � T (�0). By Lemma 24, theexpected cost incurred by A on the sequence % = %0 is at least D times B0's cost on �0 minus D�0,where �0 = �0jP jW . Since before serving %0 the optimal algorithm is forced to the con�gurationv1, the cost incurred by the optimal algorithm to serve %0 is at most D � T (�0), as it can replicateimmediately to all vertices of �0. Note, that the cost incurred by the optimal algorithm to serve%0 is at least the minimum distance ` in N . Let �0 be the (;; �0)-delete forcing sequence used byLemma 24.Now, use Lemma 24 again with �1, � = �1 = �0%0. We can de�ne sequences �1, �1 and %1, anda Steiner tree algorithm B1, such that B1's cost on �1 is at least b0 � T (�1), and A's cost on %1 isat least D times B1's cost on �1 minus D�1, where �1 = �1jP jW , and the optimal cost on %1 is at36

www.manaraa.com

most D � T (�1). Now, repeat this process in�nitely many times. Let �i = �0%0�1%1 � � � �i�1%i�1 bethe sequence given to A after i repetitions of this process. We get:costA(�i)� aCostOPT(�i) � b0 � ai` � Pi�1j=0 �ji` :Choose �j such that P1j=0 �j converges, and get that the right-hand side of the inequality convergesto b0 as i goes to in�nity, a contradiction.Imase and Waxman [IW] prove the following theorem.Theorem 25 For all n, there exist graphs Gn over n nodes, such that the competitive ratio foron-line Steiner tree for those graphs is in
(log n).We note that this result applies to randomized algorithms against the oblivious adversary.Theorems 23 and 25 giveTheorem 26 For all n, there exist networks over n processors Nn, such that the competitive ratioof any randomized algorithm against the oblivious adversary on those networks is in
(log n).9 Distributed AlgorithmsIn the previous sections (Sections 6, 7.1, 7.2, and 5, we have assumed some \global intelligence,"that knows the con�guration of the entire network, and makes decisions for the single processors. Inthis section, we remove this assumption and give distributed competitive �le allocation algorithms.The model assumes that in a network over n processors, sending a message of sizeO(maxflog n; log(Diam)g)over a communication link of weight w costs w. We assume, that the size of data, which a reador write request use, is a single word of size log n bits. The size of the �le is D words, each of sizelog n bits.De�nition. A distributed on-line �le allocation algorithm has to serve sequences of readand write requests that processors in the network initiate. The cost of a distributed on-line �leallocation algorithm to serve a sequence of requests is the total cost of messages it sends to servethe sequence.De�nition. A distributed on-line algorithm is c-competitive i� there exists a constant a, suchthat for any global-control adversary Adv,E(CostAlg(�)) � c � E(CostAdv(�)) + awhere � is the request sequence generated by Adv.37

www.manaraa.com

9.1 Preliminaries and Distributed Data Structures9.2 The Cover ProblemThe Cover Problem De�nitionThe on-line cover problem is the problem of maintaining a covering of small number of smalldiameter subsets of a dynamically changing set in a weighted graph.Let G be a weighted graph. Let Q be a subset of nodes of G.For integers r; s > 0, a set C = fC1; C2; : : : ; Csg of mutually exclusive subsets of nodes, anda choice of nodes p1; p2; : : : ; ps, pi 2 Ci, is called an r-cover of Q i� for every i, i = 1; 2; : : : ; s,Q \ Ci 6= ;, and Q � [si=1Ci, and for every Ci, i = 1; 2; : : : ; s, the distance between any node inCi and pi is at most r.Each of the sets Ci is called a cover set. The chosen nodes, p1; p2; : : : ; ps, are called coveringnodes.Initially the set contains a single node Q = fq0g and the cover contains one covering setC1 = fq0g, and a single covering node p1 = q0.The on-line cover problem for some �xed parameter r is the problem of maintenance of anr-covering for a dynamic set Q, where insertions into Q and deletions from Q are allowed (but Qis never allowed to be empty), where s changes with Q.The distributed on-line cover problem is that of maintaining a covering of a dynamic set of pro-cessors Q in the network allowing insertions, which are initiated at processors in Q, and deletions,which are initiated at the deleted processor.De�ne the optimal cost of an insertion to be the distance between the origin node p and theinserted node q, and the optimal cost for a deletion is 0.For every integer k > 0, We give in Section 9.6 an algorithm for the on-line cover problemthat maintains a 2(k � 1)-covering such that for every sequence of insertions and deletions, if theoptimal cost for the sequence is UPD, the �nal value of s is at most 1 + 1k �UPD.In fact we give a distributed algorithm that maintains the covering for a set Q of processorswith the following additional properties:1. The algorithm is O(1)-competitive. I.e., its communication cost is at most O(1) �UPD2. The algorithm maintains a distributed data structure of the cover sets, so that reaching aprocessor in Q from a covering processor costs O(k).38

www.manaraa.com

The solution for the distributed on-line cover problem and its analysis is described in section9.6.When all operations are insertions we can de�ne a tree S over the set of nodes Q with edgesbetween every origin and destination nodes for each insertion. In this case the covering of Q canbe viewed as a tree cover, i.e., a partition of the dynamically growing subtree S in a graph intoO(T (S)=k) subtrees of diameter at most k each, where k > 0 is some integer.The Hierarchical Cover ProblemIn most of the cover problem applications (see Section 9.5) we need to simultaneously solve (r; s)-cover problems with r = O(2i) for all 0 � i � log(Diam).We would like to minimized the �nal value of s as well as the costs of the distributed coversalgorithm.To obtain the hierarchy of covers de�ne i-level cover algorithms for solving the 2(k � 1)-coverproblem for Q for k = 2i, i.e., give all levels algorithms the entire sequence of insertions anddeletions. Naively, this will result in log(Diam) factor in the competitive ratio of the resultinghierarchical algorithm, since every i-level algorithm is O(1) competitive.We have stronger claims on the performance of the hierarchical algorithm.Let the number of of covering sets maintained by the i-level cover algorithm be denoted s(i).Let the total number of covering sets creations made by the i-level cover algorithm be denotedc(i). Then s(i) � c(i).Let the communication cost expended by the distributed i-level algorithm be denoted CostCPi .Theorem 27 The hierarchical cover algorithm has the following properties:� The total cost expended by the hierarchical cover algorithm islog(Diam)Xi=0 CostCPi � O(minflog n; log(Diam)g) �UPD:� The total sum of diameters of covering sets maintained by the algorithm obeyslog(Diam)Xi=0 2i � (s(i)� 1) � log(Diam)Xi=0 2i � (c(i)� 1)� O(minflog n; log(Diam)g) �UPD:� For every i, the algorithm maintains a distributed data structure of the i-level cover sets, sothat reaching a processor in Q from a covering processor at the i-level cover costs O(2i).39

www.manaraa.com

9.2.1 Data TrackingThe data tracking mechanism of is a generalization of the mobile user tracking mechanism of[AP1, AP3].In a network over a set P of n processors, the data tracking problem allows to maintain a subsetQ of processors holding copies of the �le with the following operations on Q:Insert(u,v), initiated at u 2 Q, inserts v to the set Q.Delete(v), initiated at v, removes v from the set Q.Find(u), initiated at u, returns the address of a processor v 2 Q.De�nition. A distributed on-line data tracking algorithm serves sequences of Insert, Deleteand Find operations initiated at processors of the network. The cost of a distributed on-line datatracking algorithm for a sequence of operations is the total cost of messages it sends to conductthose operations.De�nition. The approximation factor for an on-line data tracking algorithm, �, is the maximumover all Find operations, of the ratio d(u; v)=d(u;Q), where u is the node initiating the Find, andv 2 Q is the returned node.De�nition. The optimal cost of Insert(u,v) is the cost of transmitting the �le from u to v alone;i.e., D � d(u; v).The optimal cost of Delete(v) is 0.The optimal cost of Find(u) is the cost of sending a message from u to the closest processor inQ; i.e., d(u;Q)In Section 9.5 we present a distributed on-line data tracking algorithm, named TRACK, dealingwith arbitrary sequences of Insert, Delete and Find operations, such that the following theoremholds.Theorem 28 For every n-processor network, for every sequence of operations �,1. TRACK's total cost for conducting Insert and Delete in � isO(minflog2 n; log n log(Diam)g= log2D) times the total optimal cost of those operations.2. TRACK's cost on each Find in � is O(log2 n= log2D) times the optimal cost of that Find.40

www.manaraa.com

3. TRACK's approximation factor is O(log n= logD).(Where the value of D is truncated to [2; n]).The data tracking competitive ratio over request sequences of of updates and searches is denotedCTRACK. We have that CTRACK = O(log2 n= log2D).The data tracking approximation factor is denoted by �.The memory needed for the algorithm is at most O(log2(Diam)) per processor.If no memory considerations are made then the approximation factor can be in fact reduced to� = O(1).9.2.2 Scanning MechanismAnother simple but useful tool (see Section 9) is a distributed data structure that enables scanningthrough a subset of processors.The scanning mechanism is usually used together with the data tracking mechanism, as toenable performing tracking operations over all processors, such as a Delete-All operation.In a network over a set P of n processors, let Q be a subset of processors in P . Initially Qincludes a single processor v0.Given a sequence of insertions for processors v1; v2; : : : ; vt, we maintain a distributed datastructure.The processors v1; v2; : : : ; vt are connected in a tree structure T , by using an adjacency list ateach processor in T .When an insertion for vi arrives: i.e., Insert(vj,vi) , j < i is made, we add vi to the tree t, byleaving a pointer in vj to vi, we also leave a back-tracking pointer in vi to vj.This procedure enables scanning through all processors in the tree structure starting at everyone of the processors in T , at a cost equal to the weight of T .The above description requires a considerable amount (�(n)) of memory per processor, forkeeping the list of its children. In the next section we describe how this can be reduced toO(log(Diam)). 41

www.manaraa.com

9.2.3 Lists ManipulationWe now turn to the question of memory needs of our distributed algorithms. In our algorithmsprocessors, p, maintain lists of pointers L(p) to other processors.Assume that the address of a processor appears in the lists of at most x processors.Keeping every list at the processor maintaining it requires �(x � n) pointers per processor.To overcome this di�culty, for every processor we translate the list L(p), into log(Diam) lists.List Li(p), 0 � i � log(Diam), is the list of processors at distance between 2i and 2i+1� 1 from p.Now, instead of keeping the entire list in p, pointers are kept to only one of the processors in eachof the log(Diam) lists, and within a list Li(p), each processor in the list keeps a pointer to the next.The distance between any two processors u and v in Li(p) is at most d(u; p)+d(p; v) � 2(2i+1�1),and therefore every operation on the list Li(p), is proportional to 2i.It follows that every processor needs only log(Diam) pointers for maintaining the informationfor its own list, and since it may appear in the lists of at most x processors it may need x morepointers. Therefore the total memory requirements is reduced to O(x + log(Diam)) pointers perprocessors.The operations provided by this data structures, for the list L(p), are:� Insert(v) | insert the address of processor v into L(p), this is done by updating the pointersin the required level, at a cost of O(d(p; v)).� Delete(v) | delete the address of processor v into L(p), this is done by updating the pointersin the required level, at a cost of O(d(p; v)).� Find | Find a processor in L(p), by using the pointer to a processor in the nonempty listLi(p) with minimal i.� Scan | Scan the entire list, at a cost proportional to the communication cost between p andall processors in L(p).9.3 Uniform, Tree and Ring Network TopologiesWe start with some simple examples of competitive distributed algorithms, by showing that theour �le allocation algorithms for uniform, tree and ring networks in the previous sections can be42

www.manaraa.com

adapted to obtain distributed competitive algorithms keeping the competitive ratio O(1).Uniform NetworkThis is the simplest case, since for any deterministic algorithm, requests that do not cost thealgorithm can be ignored without increasing the adversary cost, and every request of cost 1, canbe informed of to a single chosen leader in the network that will simulate the algorithm and invokethe required operations. The cost of communicating to and from the leader is at most O(1) timesthe cost of the request and hence the increase in the competitive ratio is O(1).In particular we have that the algorithm Count in Section 6 can be made distributed with onlyO(1) overhead.Tree NetworksWe give a distributed implementation of the algorithms for given in Section 7.1 and 7.2.Both algorithms maintain the set of �le copies in a subtree of the network, denoted B, and theoperations needed to implement the algorithm are the following:� Find(v)| Find the nearest processor to v, in the tree of processors holding copiesB, to enablereading and replicating the �le. The cost expended for this operation should be proportionalto d(B; v).� Scan the tree of copies B in order to enable writing to the �le. The cost for this operationsshould be proportional to T (B).� Growing and Shrinking the tree of copies B at its leaves. The cost associated with growingthe tree should be proportional to the length of the path added. The cost associated withshrinking the tree is 0.In order to do these tasks we maintain two distributed data structure: one is the tree scanningmechanism described in Section 9.2.1, that keeps the processors in B, in a tree structure maintain-ing pointers between adjacent processors. This structure enables writing the �le by scanning thetree structure T at a cost proportional to T (B). Since both algorithms shrink the tree only after awrite is invoked then when scanning the tree is over a scan-back operations begins from the leavesback, shrinking the tree. The shrinking is done as described in the global-control algorithms. Thecost of this process is still proportional to T (B).The other data structure is a very simple data tracking mechanism for trees, which is just apointer in each node not holding a copy of the �le, indicating in the direction of which of its edgesis the tree of copies B. This structure is updated when a replication or deletion of a �le copy is43

www.manaraa.com

made, without incurring further cost. Therefore a Find(v) operation is performed by following thepointers from v towards a processor in B, at a cost of d(B; v).Ring NetworksSimilarly to the case of trees, the ring randomized algorithm in Section 5 maintains the �le copiesin processors along an interval B.Again, we maintain pointers at processors of B that enable scanning B at a cost proportionalto T (B).The only di�erence from trees is the implementation of a Find(v). This is implemented usinga search algorithm that searches from v, in phases. In phase i, it searches in the two possibledirections from v to a distance 2i. It easily follows that the cost expended until a �le copy is foundis proportional to d(B; v).9.4 A Randomized Algorithm for Arbitrary Network TopologiesWe demonstrate the implementation of our randomized general topology �le allocation algorithmSB as a distributed algorithm in a network of processors. SB is de�ned with respect to someon-line Steiner tree algorithm. We use a version of SB, that runs a variant of the greedy on-lineSteiner tree algorithm of [IW]. Given a new input vertex p, this greedy algorithm attaches it tothe closest vertex in the existing tree. No other vertices are added. In a network over n processors,the greedy algorithm is strictly O(log n)-competitive. The proof is identical to the one given in[IW].We give a distributed on-line �le allocation algorithm, named distributed-SB, for any network.We measure distributed-SB's messages cost for any sequence of reads and write and show that itis within polylogarithmic factors of the o�-line cost.Note, that distributed-SB's cost is measured against the cost of an optimal non-distributedalgorithm.Distributed-SB uses the distributed data tracking mechanism (Section 9.2.1The Distributed On-line Data Tracking Problem.In a network over a set P of n processors, maintain a subset Q of processors holding copies of the�le with the following operations on Q:Insert(u,v), initiated at u 2 Q, inserts v to the set Q.Delete(v), initiated at v, removes v from the set Q.44

www.manaraa.com

Find(u), initiated at u, returns the address of a processor v 2 Q.In Section 9.5 we present a distributed on-line algorithm, named TRACK, that solves the datatracking problem. The properties of this algorithm are given in Theorem 28 in Section 9.2.1.Let CTRACK = O(log2 n= log2D) be the data tracking competitive ratio, and let � be theapproximation factor of the data tracking mechanism.We prove the following result:Theorem 29 For every n-processor network N , distributed-SB is O(��CTRACK�minflog n; log(Diam)g)competitive.Corollary 30 For every n-processor network N , distributed-SB isO(� log3 n= log2D) competitive.Distributed-SB.Distributed-SB works as follows. It maintains the set of processors holding copies of the �le ina tree structure T , by using an adjacency list at each processor in T , enabling scanning the setof processors, as described in Section 9.2.2. Vertices of T are also maintained by the distributedon-line data tracking algorithm. If a processor r initiates a read request, invoke Find(r), whichreturns the address of a processor q holding a copy. Get the required data. With probability 1=Ddo the following. Simulate the greedy Steiner tree algorithm by adding r to T (connected to q).Replicate to r using Insert(q,r).If a processor w initiates a write request, invoke Find(w), which returns the address of aprocessor q holding a copy. Send the required data from w to q, then from q to the rest of theprocessors holding copies via the tree structure T . With probability 1=p3D do the following.Add w to T , and replicate to w using Insert(q,w). Then, scan T post-order, starting at q, and ateach visited processor p 6= w, Delete(p). Then, collapse T to the single vertex w.Our analysis of distributed-SB proceeds as follows. We compare its cost with the cost ofSB on the same sequence and with the same outcome of coin tosses. We divide SB's cost anddistributed-SB's cost into three categories:1. Find cost, which is the cost of reads, excluding the replication cost.2. Scan cost, which is the cost of writes, excluding the migration cost.3. Update cost, which is the cost of replications and deletions.45

www.manaraa.com

In the following claims, we assume that SB and distributed-SB use the same sequence of randombits.Fact 31 At all times, the set of processors holding copies of the �le that distributed-SB maintains(vertices of T) equals the set of processors in which SB holds copies of the �le.Lemma 32 At all times, the total length of edges of the tree T maintained by distributed-SB is �times the total length of of edges of the greedy Steiner tree maintained by SB.Proof. Follows from Fact 31 and statement 3 of Theorem 28.Lemma 33 For every sequence of requests �, for every read request in �, the �nd cost of distributed-SB for that read is CTRACK times the �nd cost of SB for the same read.Proof. Follows from Fact 31 and statement 2 of Theorem 28.Lemma 34 For every sequence of requests �, for every write request in �, the scan cost ofdistributed-SB for that write is CTRACK + � times the scan cost of SB for the same write.Proof. The scan cost includes the cost of �nding a processor holding a copy of the �le and thecost of scanning the tree of processors holding copies. By Fact 31 and statement 2 of Theorem 28,the �rst task costs distributed-SB CTRACK times SB's cost for the same task. By Lemma 32, thesecond task costs distributed-SB � times SB's cost for the same task.Lemma 35 For every sequence of requests �, the update cost of distributed-SB for � is O(� �CTRACK) times the update cost of SB for �.Proof. The update cost of distributed-SB includes the data tracking cost and the cost formaintaining T . SB and distributed-SB replicate and delete the same copies, but distributed-SB replicates along distances, which are � times the distances SB replicates along. Fact 31 andstatement 1 of Theorem 28 give, that the data tracking cost of distributed-SB over � is O(CTRACK)times the update cost of a non-distributed algorithm, that replicates and deletes exactly the sameway that distributed-SB does. This is O(� � CTRACK) the update cost of SB, which is simplythe cost of replications. Now, consider a subsequence of �, where T grows monotonically (i.e.,processors are added to T) excluding the last request, where T might collapse. The maintenancecost of T over this subsequence is O(1) times the maximal size of T , which by Lemma 32 is O(�)times the maximal size of the tree maintained by SB. SB's update cost to create that tree is Dtimes its size. Therefore, we get that distributed-SB's cost for maintaining T is O(�=D) timesSB's update cost. 46

www.manaraa.com

Proof of Theorem 29. Follows fromLemmas 33, 34, 35, and the fact that SB isO(minflog n; log(Diam)g)-competitive (Theorem 10).9.5 Distributed Data TrackingIn this section we describe the internals of the data tracking mechanism.We recall the de�nitions and statements from Section 9.2.1.In a network over a set P of n processors, the data tracking problem allows to maintain a subsetQ of processors holding copies of the �le with the following operations on Q:Insert(u,v), initiated at u 2 Q, inserts v to the set Q.Delete(v), initiated at v, removes v from the set Q.Find(u), initiated at u, returns the address of a processor v 2 Q.De�nition. The approximation factor for an on-line data tracking algorithm, �, is the maximumover all Find operations, of the ratio d(u; v)=d(u;Q), where u is the node initiating the Find, andv 2 Q is the returned node.De�nition. The optimal cost of Insert(u,v) is the cost of transmitting the �le from u to v alone;i.e., D � d(u; v).The optimal cost of Delete(v) is 0.The optimal cost of Find(u) is the cost of sending a message from u to the closest processor inQ; i.e., d(u;Q)We give a distributed on-line data tracking algorithm, named TRACK. We recall Theorem 28stated in Section 9.2.1.Theorem 28 For every n-processor network, for every sequence of operations �,1. TRACK's total cost for conducting Insert and Delete in � isO(minflog2 n; log n log(Diam)g= log2D) times the total optimal cost of those operations.2. TRACK's cost on each Find in � is O(log2 n= log2D) times the optimal cost of that Find.3. TRACK's approximation factor is O(log n= logD).47

www.manaraa.com

(Where the value of D is truncated to [2; n]).The memory needed for the algorithm is at most O(log2(Diam)) per processor. If no memoryconsiderations are made then the approximation factor can be in fact reduced to O(1).The Data Tracking SolutionIn the solution to the data tracking problem (Section 9.2.1), we make use two tools.One is a graph-theoretic structure of regional matchings, given by [AP1], an application of thesparse graph partitions [AP2].An m-regional matching is an assignment of 2 sets of processors to each processor, a read-setand a write-set, such that for every two processors p and q that satisfy d(p; q) � m, the read-setof p and the write-set of q have a non-empty intersection.The radius of a read-set or a write-set of p is the maximum distance between p and a processorin the set, divided by m.The degree of a read-set or a write-set of p is the number of processors in the set.The read-radius, read-degree, write-radius and write-degree of an m-regional matching are de-�ned as the maximum over all processors p of the corresponding parameter for p.[AP1] show how to construct for every m and `, 2 � ` � 2 log n, an m-regional matching withthe following parameters: read-radius at most `, read-degree at most 2`+ 1, write-radius at most2` + 1, and write-degree at most n2=`.For our purposes we take ` = 2 log n=(logD � log logD). Therefore, the read-radius, read-degree, and write-radius are all O(log n= logD), and the write-degree is D= logD.The other tool, we use for the solution to the data tracking problem, is a solution to the on-linecover problem.We recall the de�nitions of the cover-problem from Section 9.2.Let Q be a subset of processors. For integers r; s > 0, a set C = fC1; C2; : : : ; Csg of mutuallyexclusive subsets of processors, and a choice of processors p1; p2; : : : ; ps, pi 2 Ci, is called an r-coverof Q i� for every i, i = 1; 2; : : : ; s, Q \ Ci 6= ;, and Q � [si=1Ci, and for every Ci, i = 1; 2; : : : ; s,the distance between any processor in Ci and pi is at most r.Initially the set contains a single processor Q = fq0g and the cover contains one covering setC1 = fq0g, and a single covering processor p1 = q0.Each of the sets Ci is called a cover set. The chosen processors, p1; p2; : : : ; ps, are called coveringprocessors. 48

www.manaraa.com

The on-line cover problem is the problem of maintenance of covering processors for a dynamicset Q, where insertions into Q and deletions from Q are allowed (but Q is never allowed to beempty).The hierarchical cover problem is that of simultaneously maintaining (r; s)-cover problems withr = 2 � (2i � 1) for all 0 � i � log(Diam).In Section 9.6 we give a competitive distributed algorithm that solves the hierarchical coverproblem.The properties of the hierarchical cover algorithm is given in Theorem 27 in Section 9.2.Given solutions to the regional matching problem and the hierarchical cover problem, wesolve the data tracking problem as follows. Compute m-regional matchings for m = 2i, i =2; 3; 4; : : : ; log(Diam). This is done once.Insert(u,v) is performed by inserting v into Q by the hierarchical cover algorithm. If the i-levelcover algorithm creates a new cover set with a new covering processor p, then p's write-set of the2i+2-regional matching is informed of p. Informing the write-set costs O(2i �D log n= log2D).Delete(u) is performed by deleting u from Q by the hierarchical cover algorithm. Each timean entire cover set of the i-level cover algorithm is removed, the corresponding covering processorinforms its write-set of the 2i+2-regional matching. Again, informing the write-set costs O(2i �D log n= log2D).Find(u) is performed by searching u's read-sets, starting with the 4-regional matching read-set,then the 8-regional matching read-set, etc. For the 2i-regional matching read-set, u checks if thereis a processor in the read-set, which is in the write-set of a covering processor (in the same regionalmatching). If such a processor q is found, u stops the search. Now, u can reach a processor holdinga copy through q, the covering processor p that contains q in its write-set, and the data structureof the (i� 2)-level cover algorithm that enables p to �nd a processor in Q.The following claims are useful for the analysis:Claim 36 Let u be a processor. If there exists a processor v holding a copy, such that the distancebetween u and v is at most 2i, then the read-set search in the Find(u) implementation does not gobeyond the 2i+1 regional matching.Proof. Let w be v's covering processor in the (i�1)-level cover algorithm. The distance betweenv and w is at most 2 � (2i�1 � 1) � 2i. By the triangle inequality, the distance between u andw is at most 2i + 2i = 2i+1. Therefore, in the 2i+1-regional matching, the read-set of u and thewrite-set of w intersect. 49

www.manaraa.com

Claim 37 Let v be the processor returned by a Find(u) call whose read-set search terminated atthe 2i-regional matching. Then, the distance between u and v is in O(2i log n= logD).Proof. Let q denote the processor in the 2i-regional matching at which the search ended success-fully. Let p denote the covering processor that contains q in its write-set. d(u; v) is at most thelength of the path u{q{p{v, which is d(u; q)+ d(q; p) + d(p; v). d(u; q) is bounded by the diameterof u's 2i-regional matching read-set, which is in O(2i log n= logD). Similarly, d(q; p) is boundedby the diameter of p's 2i-regional matching write-set, which is in O(2i log n= logD). A bound ond(p; v) is given by Property 3 of the (i� 2)-level cover algorithm; i.e., O(2i�2).Proof of Theorem 28. Let � be an arbitrary sequence of Insert, Delete and Find operations.We analyze the cost of the algorithm on �.Let the sum of optimal costs for Inserts and Deletes in � be denoted UPD. The optimal costof the sequence of insertions and deletions given to the hierarchical cover algorithm during thehandling of � is UPD=D.Theorem 27 implies that the total cost of all cover algorithms to handle the sequence they aregiven during the handling of � isO(UPD �minflog n; log(Diam)g=D): (6)In each of the log(Diam) cover algorithms, the number of cover sets removed is bounded bythe number of cover sets created.Let the total number of covering sets creations made by the i-level cover algorithm be denotedcs(i). Then s(i) � cs(i).Theorem 27 states thatlog(Diam)Xi=0 2i � (cs(i)� 1) � O(minflog n; log(Diam)g) �UPD=D:Therefore, the total cost of informing the write-sets of Inserts and Deletes is at most:log(Diam)Xi=0 2(cs(i)� 1) �O(2iD log n= log2D)� O(minflog n; log(Diam)g) � UPDD D log n= log2D� O(minflog2 n; log n log(Diam)g= log2D) �UPD: (7)The �rst statement of the theorem follows from Equations 6 and 7.50

www.manaraa.com

Now, examine the cost of a Find. Let the last read-set searched be that of the 2j-regionalmatching. The communication cost of the last search is bounded by O(2j � log2 n= log2D). Thisalso bounds the total search cost. Tracing the pointers to a processor holding a copy costs O(2j �log n= logD) + O(2j � log n= logD) + O(2j) = O(2j � log n= logD). The optimal cost of this Findoperation is given by Claim 36. Therefore, we conclude that the cost of the on-line data trackingalgorithm per Find is O(log2 n= log2D) times the optimal cost per the same Find. This shows thecorrectness of the second statement of the theorem.The third statement of the theorem follows directly from Claim 37.9.6 The Cover Problem SolutionWe complete our discussion by showing a solution to the cover problem (Section 9.2). We repeatthe formulation of the cover problem.The Cover ProblemGiven a network of processors, de�ned by a weighted graph G, and a dynamically changing set ofprocessors among the network processors, we would like to construct an (r; s)-cover for Q. Thatis dynamically de�ne a set of mutually exclusive subsets of processors C = fC1; C2; : : : ; Csg, anda choice of processors p1; p2; : : : ; ps, pi 2 Ci, so that for every i, i = 1; 2; : : : ; s, Q \ Ci 6= ;, andQ � [si=1Ci, and for every Ci, i = 1; 2; : : : ; s, the distance between any node in Ci and pi is atmost r.Initially the set contains a single node Q = fq0g and the cover contains one covering setC1 = fq0g, and a single covering node p1 = q0.The on-line cover problem for some �xed parameter r is the problem of maintenance of anr-cover for a dynamic set Q, where insertions into Q and deletions from Q are allowed (but Q isnever allowed to be empty), where s changes with Q.De�ne the optimal cost of an insertion to be the minimum distance between a node of Q andthe inserted node, and the optimal cost for a deletion is 0. The optimal cost for a sequence ofinserts and deletes is the sum of optimal costs of the operations.We now turn to describe the cover algorithm and the proof of Theorem 27.The Basic Cover Algorithm | Unweighted CaseWe describe an on-line algorithm for maintaining a 2(k � 1)-cover for any integer k > 0.Assume at �rst, that the network of processors is de�ned by a weighted graph G in which all51

www.manaraa.com

weights are 1, and that all insertions are to processors adjacent in this graph to processors alreadyin Q. Therefore, the cost charged for an insertion is 1.Each cover set is represented by a directed tree. The root is the corresponding covering proces-sor, and all edges point towards the root. A processor contained in a cover set is marked as such.A processor in Q is marked as such.The cover algorithm works as follows. Every processor p holds a counter cp. Initially q0'scounter is 0. For all other processors the value is unde�ned.Let the current cover sets be C = fC1; C2; : : : ; Csg, let C = [si=1Ci, and let the coveringprocessors be p1; p2; : : : ; ps. The algorithm maintains the following invariants:1. For every p 2 C, 0 � cp � 2k � 2.2. For every i, 1 � i � s, for every p 2 Ci, cp is an upper bound on d(p; pi).3. For every i, 1 � i � s, all processors in Ci form a directed tree rooted at pi. This tree is asubtree of G.4. For every i, 1 � i � s, every path from pi to a leaf in the tree representing Ci contains atleast one processor of Q.5. (k� the number of cover sets created) + (the number of processors p such that cp � k) �(the optimal cost for the sequence).These invariants ensure the correctness of the algorithm. Invariants 1,2 and 4 imply that the costof reaching a processor in Q from a covering processor is at most 2k � 2.We now describe the cover algorithm, by de�ning how it handles insertions and deletions.Let p be an inserted processor. Let q 2 Q be the processor adjacent to p, that initiates theinsertion. If p is already in C, it simply marks itself as being in Q. Otherwise, the following updateprocedure is performed. First, cp is set to cq + 1, and p is added to q's tree by an edge pointingfrom p to q.Now, if cp = 2k� 1, a scan-back procedure is conducted, starting at p. Each processor scanneddecreases its counter by k, and then the scan moves to its parent in the tree. The scan-back stopsonce a processor b with cb < k is encountered (the root has a counter 0, so the process must stop).This preserves invariant 1: 0 � cp � 2k � 2.Let t be the processor scanned just before b. If the new value of ct is 0, then a new cover set iscreated with t as the covering processor. This is done by detaching t and all successors of t fromb's tree. 52

www.manaraa.com

Let p be a deleted processor. p marks itself as not in Q. If p 2 C n Q has no successors in Q,remove p from C. If p is the root of its tree then the appropriate cover set is removed, otherwisea message is sent to p's parent to inform of the its removal from the subtree.This procedure preserves invariant 4.The Basic Cover Problem | AnalysisThe procedure described above clearly preserves properties 1 and 4, as mentioned above.We turn to prove the other properties of the cover algorithm.We show that the cover algorithm preserves a somewhat stronger property than invariant 2:2'. For every i, 1 � i � s, for every p 2 Ci, cp is an upper bound on d(p; pi). If cp � k thencp = d(p; pi).The proof that the invariant holds is by induction on the insertion steps in the algorithm, usingthe fact that when a processor is inserted it is �rstly assigned its predecessor's counter plus one,and the fact that if a counter is ever decreased then it decreased from some value greater than kto some value smaller than k.It is clearly true at the beginning where there is only one node in the tree with zero counter.Consider a new insertion of processor p from q. For a processor x, let c0x denote the value of itscounter after the insertion. If c0p � 2k � 2 then since c0p = cq + 1 the invariant follows from theinduction hypothesis. Assume q 2 Ci, since the distance to the covering processor pi increases byat most 1. we have d(pi; p) � d(pi; q) + 1 � cq + 1 = c0p.If c0p = 2k � 1 then let b and t be as in the procedure above. If c0t > 0 then since when twas inserted from b, we had that t's counter was greater by 1 from b's counter. and before theinsertion of p, cb < k while ct > k it follows that cb was once decreased by k, and thereforec0t = ct � k = cb + 1.If ct = 0 then the invariant holds since before the insertion all counters of processors in the sub-tree rooted at t where greater than k, and there distance to the covering processor only decreasedas a result of the creation of a new cover set. The only counters decreased are those along thepath from t to p. Obviously each counter is equal to the processors distance to the new coveringprocessor t. It follows that the procedure preserves invariant 2.To prove invariant 5, de�ne � = the number of processors p, such that cp � k. Obviously whena new processor is inserted �� � 1. A processor deletion may only reduce the value of �. If anew cover set is created, that is ct = 0, it follows that the length of the path from t to p is k � 1.The counter of every processor along the path has decreased from a value of at least k to a value53

www.manaraa.com

below k. Since there are k such processors we get �� � �k. As � � 0 the claim follows.In the actual implementation of this process, between the time a processor p is inserted by qand the time p is deleted, if ever, there is a constant number of messages passed over the edgebetween p and q | one message for the insertion itself, at most once the scan-back passes overthis edge, and at most once p is detached from q. The fact that a scan-back message passes onlyone through each edge follows from the fact that during the scan-back the counters are alwaysdecrease from a value at least k to a value less than k. This implies the competitiveness of thealgorithm.The Cover Algorithm | Weighted CaseArbitray distances can be translated into integral distances while changing costs by no more thana constant factor. To deal with arbitrary integer distances between nodes, imagine that along anedge between two nodes there are virtual nodes that divide the distance into segments of length1. If q inserts p, let up be the length of the shortest path from q to p. The insertion is done bysimulating insertions for all virtual processors along the shortest path from q in Q to p in thatorder. If one of the virtual processors is a covering processor then let p be a covering processor.This may only decrease distances between a covering processor and the actual processors in it'scover set. Following this, delete all virtual processors.The Hierarchical Cover AlgorithmThe hierarchical cover algorithm (Section 9.2) is de�ned by simultaneously running cover algo-rithms for log(Diam) levels. For level 0 � i � log(Diam) we run a 2(k � 1)-cover algorithm fork = 2i.Let the number of of covering sets maintained by the i-level cover algorithm be denoted s(i).Let the total number of covering sets creations made by the i-level cover algorithm be denotedc(i). Then s(i) � c(i).Let the communication cost expended by the distributed i-level algorithm be denoted CostCPi .We recall Theorem 27 stated in Section 9.2.Theorem 27 The hierarchical cover algorithm has the following properties:� The total cost expended by the hierarchical cover algorithm islog(Diam)Xi=0 CostCPi � O(minflog n; log(Diam)g) �UPD:54

www.manaraa.com

� The total sum of diameters of covering sets maintained by the algorithm obeyslog(Diam)Xi=0 2i � (s(i)� 1) � log(Diam)Xi=0 2i � (c(i)� 1)� O(minflog n; log(Diam)g) �UPD:� For every i, the algorithm maintains a distributed data structure of the i-level cover sets, sothat reaching a processor in Q from a covering processor at the i-level cover costs O(2i).To prove the theorem we need to replace property 5 of the cover algorithm by the followingstronger claim.Let the optimal cost for insertions of nodes v, such that uv � (2i � 1)=2n be denoted UPDi.5'. For every level i, (c(i)� 1) � (2i � 1) + Xp;up� (k�1)2n ;cp�k up � 2 �UPDi:Thus the optimal cost, uv, of an insertion of node v is accounted for only in levels i such that2i � 1 � 2n � uv, and therefore in at most O(minflog n; log(Diam)g) levels.Summing up over all levels we getPlog(Diam)i=1 (c(i)�1)�2i is bounded above byO(minflog n; log(Diam)g)times the optimal cost, giving the bound in Theorem 27.To prove invariant 5', let k = 2i, and de�ne� = Xp;up� (k�1)2n ;cp�k up:Obviously when a new node p such that up � (k � 1)=2n is inserted �� � up. A node deletionmay only reduce the value of �. Let t be as de�ned in the cover algorithm. If a new cover setis created, that is ct = 0, let P be the path from t to p. It follows that the length of the pathP is k � 1. Since Pp2P ;up< (k�1)2n up � (k � 1)=2, we have that Pp2P ;up� (k�1)2n up � (k � 1)=2. Thecounter of every node along the path has decreased from a value of at least k to a value below k.We therefore get that �� � � Xp2P ;up� (k�1)2n up � �(k � 1)=2:As � � 0 the claim follows. 55

www.manaraa.com

From the one-level cover problem analysis we can infer that the total communication costincurred by the hierarchical cover algorithm is at most O(log(Diam)) times the total updatescost.To analyze the communication cost incurred by the hierarchical algorithm as to get theO(minflog n; log(Diam)g)competitive ratio we need a more delicate distributed implementation of the hierarchy of coveralgorithms while the actual output of algorithms stays the same as before.The distributed implementation is based on the following properties of the cover algorithms:1. Denote the i-level counter of processor p by cip. Let k = 2i. Then for every j � i, if cip < kthen cip = cjp mod k, and if cip � k then cip = k + cjp mod k.2. The total cost of scan-backs for a tree Cj in level i is at most the weight of Cj, at the timeof the creation of Cj .3. Consider a leaf p of a tree Cj in level i. Let k = 2i. Then either p is a leaf in level i+ 1 aswell or that from the time p was inserted p was the root of a subtree of weight at least k� 1.Property 1 is proved by induction on the algorithms executions. If an insertion is made thenthe counter of both i-level and j-level algorithms are increased by 1. The property holds sincealways cip < 2k. Since during a scan-back processors' counters are always decreased by k in casewere at least k the property still holds.It follows that upon an insertion we need only send the highest level counter plus one bit perlevel indicating if k = 2i should be added. Then the i-level algorithm can compute the counter ofthe inserted processor using Property 1. This can be done using one message.Property 2 follows from the fact that an edge from q to p is passed during a scan-back only ifcp � k and then cp is decreased to a value less then k.It follows that the scan-back cost is bounded by the weight of the tree Cj at the time it wasconstructed. Recalling the bound on c(i) above, this weight was at least k � 1 at that time, andthus the optimal cost incurred of insertions of cost at least (k � 1)=2n is at least half the weightof Cj.Property 3 is also proved by induction on the execution of the cover algorithms. When a newnode p is inserted then it is a leaf in both levels. If during a scan-back the tree in level i is detachedand p becomes a new leaf, then it follows from Property 1 that either p is a new leaf at level i+1as well or there is a path from p to a leaf of the subtree rooted at p at level i+1 of length at leastk � 1. When a deletion for a leaf is made, one of its ancestors becomes a new leaf. It follows byinduction that the property remain true for the new node.56

www.manaraa.com

Using Property 3 we have that when a leaf p is deleted at level i, it is either deleted at leveli+1 as well, or a deletion of weight at least k� 1 can be associated with the deletion of p at leveli+1. Let q be p's parent. Then the cost of sending a message during a deletion of p at level i+1can be associated with an optimal insertion cost of k � 1 and thus a cost of at least (k � 1)=2 forinsertions of cost at least (k � 1)=2n.We conclude that the optimal cost for each insertion can be charged in at mostO(minflog n; log(Diam)g)levels as to account for the total communication cost of the hierarchical cover algorithm.The above description requires a considerable amount (�(n)) of memory per processor foreach level, if every processor keeps the list of its children. Using the list maintenance mechanismdescribed in Section 9.2.3 this can be reduced to O(log(Diam)).10 Constrained File AllocationIn this section we study the solution of multiple �le allocation problems, constrained by the localmemory of the processors. We assume all �les are of the same size. Let m = Pp kp, the totalnumber of �les that can be stored in the network, and k = maxp kp, the maximal number of �lesthat can be stored in any one processor.10.1 Lower BoundIn contrast to the situation for the �le-allocation problem { the competitive ratio achievable fordeterministic distributed paging algorithms is much higher.Theorem 38 The competitive ratio of any distributed paging algorithm, against an adaptive on-line adversary, is at least 2m� 1, in any network, when the memory capacity of all processors isequal.Proof. The lower bound is achieved even if only read requests are issued, for k+1 di�erent �les.One of the �les, called U , is special and receives no requests at all, but both algorithm andadversary must hold it somewhere in the network. Let the other k �les be R1; R2; : : : ; Rk. De�nethe impossible con�guration C, in which all processor p, hold �les R1; R2; : : : ; Rk. This is not alegal con�guration since �le U does not reside anywhere in the network. Now, for all processorsp, and 1 � i � k, we de�ne con�guration Cp;i, derived from C by replacing �le Ri with �le U inprocessor p. 57

www.manaraa.com

We say the algorithm is in state Cq;j if processor q holds a copy of U , and does not hold acopy of Rj . Following [MMS], we de�ne a set of 2m � 1 adversaries. If the on-line algorithm isin state Cq;j then the con�guration Cq;j is associated with one of the adversaries, and the otherm � 1 con�gurations Cp;i, p 6= q or i 6= j, are each associated with 2 adversaries. The adversarywith con�guration Cq;j is said to coincide with the on-line algorithm.The next read request is issued at processor q for �le Rj. Since the algorithm does not hold acopy of Rj in q, it is charged at least the distance from q to q's nearest neighbor. All adversaryalgorithms, except the one that coincides with the on-line algorithm, have a copy of Rj in q, andthus incur no cost. The algorithm that coincides with the on-line algorithm has a copy of Rj at q'snearest neighbor, and therefore can read the data requested at a cost no larger than the on-linecost.We can continue this procedure as long as the algorithm does not replicate Rj to q. If thealgorithm replicates the �le, overwriting �le Rt, (t 6= j), then the one of the two adversaries incon�guration Cq;t switches to con�guration Cq;j by replicating Rt instead of Rj, paying D timesthe distance to q's nearest neighbor, which is a lower bound on the on-line algorithm's replicationcost.If the algorithm replicates the �le while overwriting U , then U must also be migrated to someother processor z overwriting some �le Rl. The new on-line con�guration is Cz;l, and the on-linecost is at least D times the distance from q to q's nearest neighbor, called the replication costfor the algorithm, plus the distance from q to z. One of the two adversaries in con�guration Cz;lmigrates its copy of U to q, and replicate Rl to take U 's place.Thus, preserving the invariant that only one adversary coincides with the on-line algorithm,and every other con�guration has two adversary algorithms associated with it.The cost for this adversary algorithm is D times the distance from z to q, which is the same asthe migration cost for the on-line algorithm, plus D times the distance from z's nearest neighborto z. We call this cost the replication cost for the adversary. This concludes a phase of requeststo processor q, and now a new phase of requests to processor z begins.Thus the replication cost for the adversary in one phase is equal to the replication cost for theon-line algorithm in a subsequent phase.Summing the costs of all adversaries over all phases is the same as the algorithm's cost overall phases, up to a constant additive term for the �rst and last phases. Since there are 2m � 1di�erent adversaries at all times, at least one of them must have been charged no more than a1=(2m � 1) fraction of the on-line algorithm's cost, giving the required lower bound.58

www.manaraa.com

10.2 Uniform NetworksWe present a deterministic competitive distributed paging algorithm for uniform networks. Thealgorithm is optimal up to a constant factor.Our algorithm uses the following terminology. We say a processor p is free if it holds less thankp di�erent �les. A copy of a �le is called single if there are no other copies of that �le currentlyin the network.Our algorithm works in phases. Copies of �les can be either marked or unmarked. At thebeginning of a phase, all counters are zero and all copies are unmarked. Throughout, an unmarkedcopy is single, a marked copy may be not single.Algorithm DFWF (Distributed Flush-When-Full).The algorithm is de�ned for each processor p separately. Every processor maintains a counter cFfor every �le F . Initially, or as a result of a restart operation, all counters are set to zero and allmarkings are erased. Arbitrarily, copies of �les are deleted until there is exactly one copy of every�le somewhere in the network.Every processor p follows the following procedure simultaneously for all �les F :1. While cF < D, if a read(F) request is initiated at p, or if a write(F) request is initiated at pand F is unmarked, increase cF by 1, if p does not contain a copy of F .2. (a) If p is free, replicate F to p and mark it. If F was unmarked, delete the unmarked copy.(b) Otherwise, if all �le copies in p are marked then restart.(c) Otherwise, choose S to be an arbitrary unmarked copy in p.i. If F is unmarked, switch between S and F , and mark F in p.ii. Otherwise, if some free processor q is available, dump S to q, and replicate a copy ofF to p, mark this copy.iii. Otherwise, restart.3. While cF > 0, if a write(F) request is initiated by any other processor, decrease cF by 1.4. Restart.Theorem 39 Algorithm DFWF is 3m-competitive for distributed paging on uniform networks.Proof. We analyze the algorithm over a phase, between consecutive restarts. We compare thealgorithm to an optimal algorithm for that phase, which may start at any initial con�guration.59

www.manaraa.com

We measure the modi�ed optimal cost, whereby deletes cost D, whereas replications cost 0. Thesum over phases of the modi�ed optimal cost is a lower bound on any adversary's cost, up to aconstant additive term. Let W denote the total number of write requests dealt with in step 3, forall processors and all �les. Let R denote the total number of read/write requests initiated by allprocessors while at step 1 except that every processor p excludes requests to the kp �les havingthe largest cF counts.Claim 40 DFWF's cost per phase is at most (3m� 2)D +R+W .Claim 41 The modi�ed optimal cost per phase is at least maxfD;R;Wg.The Theorem follows from these claims.Proof of Claim 40. We denote byMp the set of kp �les with the largest cF counters in processorp. Lp denotes the set of �les excluding those inMp. For every p, for every �le F 2 Mp, let C(p; F)be the cost of the algorithm for requests to F in step 1, the possible replication of F in step 2,and the possible dumping of an unmarked �le as a result of replicating F in step 2c. Clearly,C(p; F) � 3D. We want to show thatXp;F2MpC(p; F) � (3m � 2)D:Case 1. At the end of the phase there were at most m� 1 marked copies. For each such copy Fin p, C(p; F) � 3D. For all other copies considered, there were at most D requests.Case 2. At the end of the phase there were m marked copies. The last unmarked copy F wasmarked in p in step 2a. Therefore, there was no dump, and C(p; F) � 2D. Also, marking F leftthe processor q holding the unmarked copy of F free. Therefore, there exists G 2 Mq, such thatC(q;G) � 2D, because, again, no dump occurs on behalf of G in q.The only requests in step 1 not accounted for are those to �les in Lp, for all p. Each suchrequest costs 1. The only write requests not accounted for are those in step 3. Each such requestcan be charged 1 in each processor not initiating the request, which holds a copy of the requested�le. Note, that each such copy is marked.Proof of Claim 41. We denote the modi�ed optimal cost in a phase by OPT.1. We do a case analysis to show that OPT� D.60

www.manaraa.com

(a) The phase ended in step 2b. Then, there is a processor p in which kp + 1 distinct �lesreceived at least D requests in step 1 each. Therefore, OPT either includes the cost ofD requests to some �le not available at p, or the cost of deleting a �le.(b) The phase ended in step 2c. Then, no processor is free. Either OPT includes the cost ofD requests at some processor p to some �le not available at p, or OPT includes the cost ofdeleting a �le (because at the end of the phase the number of copies unmarked (singles)plus the number of copies marked is exactly m, and there is a new copy requested Dtimes, but unavailable at the requesting processor).(c) The phase ended in step 4 by processor p and �le F . Either OPT includes the cost of Drequests to F in step 1, or the cost of deleting F , or the cost of D writes to F in step 3.2. For each processor p, ignore the �rst kp (or less) �les that the optimal algorithm places in p.For any other �le F requested in step 1 in p, either OPT includes the cost of the requests toF , or D for deleting some other �le. Since F was requested at most D times, OPT includesthe cost of the requests to F . Therefore, OPT� R.3. Let the number of write requests in step 3 for �le F in p be denoted by x. x � D. EitherOPT includes the cost of D requests to F in step 1, or the cost of deleting F , or the cost ofx writes to F in step 3. Therefore OPT� W .11 Conjectures and Open ProblemsThe obvious open problems are to close the gaps between upper and lower bounds, and to givedeterministic and/or randomized (oblivious) results where possible. A deterministic O(log n)-competitive �le-allocation algorithm, and a deterministic distributed algorithm are given in [ABF1],but the question of giving a deterministic counterpart to Theorem SBA is still open.Motivated by the famous [MMS] conjecture, we conjecture that the constrained �le allocationproblem has a deterministic competitive ratio of O(m) on arbitrary topologies. [ABF2] gives anO(logm)-competitive randomized algorithm for the constrained �le allocation problem on the uni-form network. We hazard the guess that similar results can be obtained by randomized algorithmsagainst oblivious adversaries for other network topologies as well.The question of what competitive algorithms can be given distributed implementations, and atwhat cost, seems to extend beyond the distributed data management set of problems, and should61

www.manaraa.com

be worth pursuing.The models presented here can clearly be generalized in several directions and at least someof them seem to address real-life concerns. E.g., issues regarding delay and congestion should beeventually addressed.12 AcknowledgmentsWe thank Baruch Awerbuch, Howard Karlo�, Dick Karp, David Peleg and Je�ery Westbrook fortheir very kind aid and comments.References[AA] N. Alon and Y. Azar. On-line Steiner Trees in the Euclidean Plane. In Proc. 8thACM Symp. on Computational Geometry, pages 337-343, 1992.[ABF1] B. Awerbuch, Y. Bartal, and A. Fiat. Competitive Distributed File Allocation. ToAppear in Proc. of the 25th Ann. ACM Symp. on Theory of Computing, pages164-173, May 1993.[ABF2] B. Awerbuch, Y. Bartal, and A. Fiat. Heat & Dump: Competitive DistributedPaging. In Proc. of the 34th Ann. IEEE Symp. on Foundations of Computer Science,pages 22-31, October 1993.[AP1] B. Awerbuch and D. Peleg. Online Tracking of Mobile Users. Technical ReportMIT/LCS/TM-410, Aug. 1989.[AP2] B. Awerbuch and D. Peleg. Sparse Partitions. In Proc. of the 31st Ann. Symp. onFoundations of Computer science, pages 503{513, October 1990.[AP3] B. Awerbuch and D. Peleg, Concurrent Online Tracking of Mobile Users, Proc.SIGCOMM. Zurich, Sept. 1991.[BBKTW] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos, and A. Wigderson. On the Powerof Randomization in Online Algorithms. In Proc. of the 22nd Ann. ACM Symp. onTheory of Computing, pages 379{386, May 1990.62

www.manaraa.com

[BLS] A. Borodin, N. Linial, and M. Saks. An Optimal On-Line Algorithm for MetricalTask Systems. In Proc. of the 19th Ann. ACM Symp on Theory of Computing,pages 373{382, May 1987.[BS] D.L. Black and D.D. Sleator. CompetitiveAlgorithms for Replication and MigrationProblems. Technical Report CMU-CS-89-201, Department of Computer Science,Carnegie-Mellon University, 1989.[C] W.W. Chu. Optimal File Allocation in a Multiple Computer System. IEEE Trans-actions of Computers, 18(10), October 1969.[CL] M. Chrobak, L. Larmore, The Server Problem and On-line Games, in On-Line Al-gorithms, DIMACS Series in Discrete Mathematics and Theoretical Computer Science,vol. 7, 1991, 11-64.[CLRW] M. Chrobak, L. Larmore, N. Reingold, and J. Westbrook. Optimal MultiprocessorMigration Algorithms Using Work Functions. Unpublished.[CV] B. Chandra and S. Vishwanathan. Constructing Reliable Communication Networksof Small Weight On-line. Journal of Algorithms.[DF] D. Dowdy and D. Foster. Comparative Models of The File Assignment Problem.Computing Surveys, 14(2), June 1982.[FKLMSY] A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch, D.D. Sleator , and N.E. Young.Competitive Paging Algorithms. Journal of Algorithms, 12, pages 685{699, 1991.[HP] J.L. Hennessy and D.A. Patterson. Computer Architecture: A QuantitativeAproach. Morgan Kaufmann Publishers, Inc. 1990.[IW] M. Imase and B.M. Waxman. Dynamic Steiner Tree Problem. SIAM Journal onDiscrete Mathematics, 4(3):369{384, August 1991.[KMRS] A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive SnoopyCaching. Algorithmica, 3(1):79{119, 1988.[MMS] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive Algorithms for On-Line Problems. In Proc. of the 20th Ann. ACM Symp. on Theory of Computing,pages 322-333, May 1988.[ML] H.L. Morgan and K.D. Levin. Optimal Program and Data Locations in ComputerNetworks. CACM, 20(5):124{13063

www.manaraa.com

[RS] P. Raghavan and M. Snir. Memory versus Randomization in On-Line Algorithms.In Proc. 16th ICALP, July 1989.[ST] D.D. Sleator and R.E. Tarjan. Amortized E�ciency of List Update and PagingRules. Communication of the ACM, 28(2) pages 202{208, 1985.[W] J. Westbrook. Randomized Algorithms for Multiprocessor Page Migration. Proc.of DIMACS Workshop on On-Line Algorithms, to appear.[WY1] J. Westbrook. and D.K. Yan. personal communication.[WY2] J. Westbrook. and D.K. Yan. Greedy On-Line Steiner Tree and Generalized SteinerProblems. In Proc. of the 3rd Workshop in Algorithms and Data Structures, AlsoLecture Notes in Computer Science, vol. 709, pages 622-633, Montr�eal, Canada,1993, Springer-Verlag.

64

